170 research outputs found
Chemical Characteristics of Electron Shuttles Affect Extracellular Electron Transfer: Shewanella decolorationis NTOU1 Simultaneously Exploiting Acetate and Mediators
In the present study, we found that our isolate Shewanella decolorationis NTOU1 is able to degrade acetate under anaerobic condition with concomitant implementation of extracellular electron transfer (EET). With +0.63 V (vs. SHE) poised on the anode, in a 72-h experiment digesting acetate, only 2 mM acetate was consumed, which provides 6% of the electron equivalents derived from the initial substrate mass to support biomass (5%) and current generation (1%). To clarify the effects on EET of the addition of electron-shuttles, riboflavin, anthraquinone-2,6-disulfonate (AQDS), hexaammineruthenium, and hexacyanoferrate were selected to be spiked into the electrochemical cell in four individual experiments. It was found that the mediators with proton-associated characteristics (i.e., riboflavin and AQDS) would not enhance current generation, but the metal-complex mediators (i.e., hexaammineruthenium, and hexacyanoferrate) significantly enhanced current generation as the concentration increased. According to the results of electrochemical analyses, the i-V graphs represent that the catalytic current induced by the primitive electron shuttles started at the onset potential of −0.27 V and continued increasing until +0.73 V. In the riboflavin-addition experiment, the catalytic current initiated at the same potential but rapid saturated beyond −0.07 V; this indicated that the addition of riboflavin affects mediator secretion by S. decolorationis NTOU1. It was also found that the current was eliminated after adding 48 mM N-acetyl-L-methionine (i.e., the cytochrome inhibitor) when using acetate as a substrate, indicating the importance of outer-membrane cytochrome
Search for an Invisibly Decaying Z\u27 Boson at Belle II in e⁺e⁻ → μ⁺μ⁻(eμ) Plus Missing Energy Final States
Measurements of the branching fractions for decays at Belle II
This paper reports a study of decays using
fb of data collected during 2019--2020 by the Belle II experiment at the
SuperKEKB asymmetric-energy collider, corresponding to events. We find , ,
, and signal events in the decay modes , ,
, and , respectively. The uncertainties quoted for the
signal yield are statistical only. We report the branching fractions of these
decays: where the first
uncertainty is statistical, and the second is systematic. The results are
consistent with world-average values
Measurement of the integrated luminosity of the Phase 2 data of the Belle II experiment
From April to July 2018, a data sample at the peak energy of the γ(4S) resonance was collected with the Belle II detector at the SuperKEKB electron-positron collider. This is the first data sample of the Belle II experiment. Using Bhabha and digamma events, we measure the integrated luminosity of the data sample to be (496.3 ± 0.3 ± 3.0) pb-1, where the first uncertainty is statistical and the second is systematic. This work provides a basis for future luminosity measurements at Belle II
Reductive dechlorination of chlorophenols and pentachlorophenol in anoxic estuarine sediments
[[notice]]補正完
Exploring the operating efficiency of semiconductor industry by a sustainable development approach
- …