26 research outputs found

### Bi-Lipschitz Bijection between the Boolean Cube and the Hamming Ball

We construct a bi-Lipschitz bijection from the Boolean cube to the Hamming
ball of equal volume. More precisely, we show that for all even n there exists
an explicit bijection f from the n-dimensional Boolean cube to the Hamming ball
of equal volume embedded in (n+1)-dimensional Boolean cube, such that for all x
and y it holds that distance(x,y) / 5 <= distance(f(x),f(y)) <= 4 distance(x,y)
where distance(,) denotes the Hamming distance. In particular, this implies
that the Hamming ball is bi-Lipschitz transitive.
This result gives a strong negative answer to an open problem of Lovett and
Viola [CC 2012], who raised the question in the context of sampling
distributions in low-level complexity classes. The conceptual implication is
that the problem of proving lower bounds in the context of sampling
distributions will require some new ideas beyond the sensitivity-based
structural results of Boppana [IPL 97].
We study the mapping f further and show that it (and its inverse) are
computable in DLOGTIME-uniform TC0, but not in AC0. Moreover, we prove that f
is "approximately local" in the sense that all but the last output bit of f are
essentially determined by a single input bit

### String Matching: Communication, Circuits, and Learning

String matching is the problem of deciding whether a given n-bit string contains a given k-bit pattern. We study the complexity of this problem in three settings.
- Communication complexity. For small k, we provide near-optimal upper and lower bounds on the communication complexity of string matching. For large k, our bounds leave open an exponential gap; we exhibit some evidence for the existence of a better protocol.
- Circuit complexity. We present several upper and lower bounds on the size of circuits with threshold and DeMorgan gates solving the string matching problem. Similarly to the above, our bounds are near-optimal for small k.
- Learning. We consider the problem of learning a hidden pattern of length at most k relative to the classifier that assigns 1 to every string that contains the pattern. We prove optimal bounds on the VC dimension and sample complexity of this problem

### On Local Testability in the Non-Signaling Setting

Non-signaling strategies are a generalization of quantum strategies that have been studied in physics for decades, and have recently found applications in theoretical computer science. These applications motivate the study of local-to-global phenomena for non-signaling functions.
We prove that low-degree testing in the non-signaling setting is possible, assuming that the locality of the non-signaling function exceeds a threshold. We additionally show that if the locality is below the threshold then the test fails spectacularly, in that there exists a non-signaling function which passes the test with probability 1 and yet is maximally far from being low-degree.
Along the way, we present general results about the local testability of linear codes in the non-signaling setting. These include formulating natural definitions that capture the condition that a non-signaling function "belongs" to a given code, and characterizing the sets of local constraints that imply membership in the code. We prove these results by formulating a logical inference system for linear constraints on non-signaling functions that is complete and sound

### An ~O(n) Queries Adaptive Tester for Unateness

We present an adaptive tester for the unateness property of Boolean functions. Given a function f:{0,1}^n -> {0,1} the tester makes O(n log(n)/epsilon) adaptive queries to the function. The tester always accepts a unate function, and rejects with probability at least 0.9 if a function is epsilon-far from being unate

### An entropy lower bound for non-malleable extractors

A (k, Îµ)-non-malleable extractor is a function nmExt : {0, 1} n Ã— {0, 1} d â†’ {0, 1} that takes two inputs, a weak source X ~ {0, 1} n of min-entropy k and an independent uniform seed s E {0, 1} d , and outputs a bit nmExt(X, s) that is Îµ-close to uniform, even given the seed s and the value nmExt(X, s') for an adversarially chosen seed s' â‰ s. Dodis and Wichs (STOC 2009) showed the existence of (k, Îµ)-non-malleable extractors with seed length d = log(n - k - 1) + 2 log(1/Îµ) + 6 that support sources of min-entropy k > log(d) + 2 log(1/Îµ) + 8. We show that the foregoing bound is essentially tight, by proving that any (k, Îµ)-non-malleable extractor must satisfy the min-entropy bound k > log(d) + 2 log(1/Îµ) - log log(1/Îµ) - C for an absolute constant C. In particular, this implies that non-malleable extractors require min-entropy at least Î©(loglog(n)). This is in stark contrast to the existence of strong seeded extractors that support sources of min-entropy k = O(log(1/Îµ)). Our techniques strongly rely on coding theory. In particular, we reveal an inherent connection between non-malleable extractors and error correcting codes, by proving a new lemma which shows that any (k, Îµ)-non-malleable extractor with seed length d induces a code C âŠ† {0,1} 2k with relative distance 1/2 - 2Îµ and rate d-1/2k

### On Axis-Parallel Tests for Tensor Product Codes

Many low-degree tests examine the input function via its restrictions to random hyperplanes of a certain dimension. Examples include the line-vs-line (Arora, Sudan 2003), plane-vs-plane (Raz, Safra 1997), and cube-vs-cube (Bhangale, Dinur, Livni 2017) tests.
In this paper we study tests that only consider restrictions along axis-parallel hyperplanes, which have been studied by Polishchuk and Spielman (1994) and Ben-Sasson and Sudan (2006). While such tests are necessarily "weaker", they work for a more general class of codes, namely tensor product codes. Moreover, axis-parallel tests play a key role in constructing LTCs with inverse polylogarithmic rate and short PCPs (Polishchuk, Spielman 1994; Ben-Sasson, Sudan 2008; Meir 2010). We present two results on axis-parallel tests.
(1) Bivariate low-degree testing with low-agreement. We prove an analogue of the Bivariate Low-Degree Testing Theorem of Polishchuk and Spielman in the low-agreement regime, albeit with much larger field size. Namely, for the 2-wise tensor product of the Reed-Solomon code, we prove that for sufficiently large fields, the 2-query variant of the axis-parallel line test (row-vs-column test) works for arbitrarily small agreement. Prior analyses of axis-parallel tests assumed high agreement, and no results for such tests in the low-agreement regime were known.
Our proof technique deviates significantly from that of Polishchuk and Spielman, which relies on algebraic methods such as Bezout\u27s Theorem, and instead leverages a fundamental result in extremal graph theory by Kovari, Sos, and Turan. To our knowledge, this is the first time this result is used in the context of low-degree testing.
(2) Improved robustness for tensor product codes. Robustness is a strengthening of local testability that underlies many applications. We prove that the axis-parallel hyperplane test for the m-wise tensor product of a linear code with block length n and distance d is Omega(d^m/n^m)-robust. This improves on a theorem of Viderman (2012) by a factor of 1/poly(m). While the improvement is not large, we believe that our proof is a notable simplification compared to prior work