8,466 research outputs found
The effect of the converging flow field of a tandem test section on longitudinal stability measurements
Converging flow effects on longitudinal stability measurements in tandem test section of wind tunne
An experimental investigation of three dimensional low speed minimum interference wind tunnel for high lift wings
As a means to achieve a minimum interference correction wind tunnel, a partially actively controlled test section was experimentally examined. A jet flapped wing with 0.91 m (36 in) span and R = 4.05 was used as a model to create moderately high lift coefficients. The partially controlled test section was simulated using an insert, a rectangular box 0.96 x 1.44 m (3.14 x 4.71 ft) open on both ends in the direction of the tunnel air flow, placed in the University of Washington Aeronautical Laboratories (UWAL) 2.44 x 3.66 m (8 x 12 ft) wind tunnel. A tail located three chords behind the wing was used to measure the downwash at the tail region. The experimental data indicates that, within the range of momentum coefficient examined, it appears to be unnecessary to actively control all four sides of the test section walls in order to achieve the near interference free flow field environment in a small wind tunnel. The remaining wall interference can be satisfactorily corrected by the vortex lattice method
Theory of the Stark Effect for P donors in Si
We develop a multi-valley effective mass theory for substitutional donors in
silicon in an inhomogeneous environment. Valley-orbit coupling is treated
perturbatively. We apply the theory to the Stark effect in Si:P. The method
becomes more accurate at high fields, and it is designed to give correct
experimental binding energies at zero field. Unexpectedly, the ground state
energy for the donor electron is found to increase with electric field as a
consequence of spectrum narrowing of the 1s manifold. Our results are of
particular importance for the Kane quantum computer.Comment: published versio
- …