4,256 research outputs found
An injectivity theorem on snc compact K\"ahler spaces: an application of the theory of harmonic integrals on log-canonical centers via adjoint ideal sheaves
Let be a log-canonical (lc) pair, in which is a compact K\"ahler
manifold and is a reduced snc divisor, and let be a holomorphic line
bundle on equipped with a smooth metric . Via the use
of the adjoint ideal sheaves (constructed from and ) and the
associated residue morphisms, sections of on
(as well as those of on ) can be related to
the -valued holomorphic top-forms on each lc center of by an
inductive use of a certain residue exact sequence derived from the adjoint
ideal sheaves. The theory of harmonic integrals is valid on each lc center
(which is compact K\"ahler), so this provides a pathway to apply the techniques
in harmonic theory to the possibly singular K\"ahler space . To illustrate
the use of such apparatus in problems concerning lc pairs, we prove a
Koll\'ar-type injectivity theorem for the cohomology on when is
semi-positive. This in turn also solves the conjecture by Fujino on the
injectivity theorem for the compact K\"ahler lc pair , providing an
alternative proof of a recent result by Cao and P\u{a}un.Comment: 30 page
Lack of Association between Polymorphisms of the Dopamine Receptor D4 and Dopamine Transporter Genes and Personality Traits in a Korean Population
Human personality traits have a considerable genetic component. Cloninger et al. were the first to postulate that certain personality traits, such as novelty seeking, are related to the dopamine neurotransmitter system. In this study, we investigated the associations between dopamine receptor D4 (DRD4) exon III and dopamine transporter (DAT1) polymorphisms and personality traits. The DRD4 and DAT1 gene polymorphisms were genotyped in 214 healthy Korean subjects, whose personality traits were assessed with the Temperament and Character Inventory (TCI). There were no significant differences between scores of TCI temperament dimensions (novelty seeking, harm avoidance, reward dependence, and persistence) and DRD4 gene polymorphism. The DAT1 gene polymorphisms also showed no significant association with any of the temperament subscales of the TCI. These data suggest that DRD4 and DAT1 gene polymorphism may not associated with personality traits in a Korean population
Reinforcing effects of methamphetamine in an animal model of Attention-Deficit/Hyperactivity Disorder-the Spontaneously Hypertensive Rat
Substrains of the Spontaneously Hypertensive rat (SHR), a putative animal model of Attention-Deficit/Hyperactivity Disorder (ADHD), have demonstrated increased sensitivity to many drugs of abuse, including psychostimulants. Therefore, it was suggested that studies in SHR may help elucidate ADHD and comorbidity with substance use disorder (SUD). However, the drug intake profile of the SHR in the most relevant animal model of drug addiction, the self-administration (SA) test, and its response on the conditioned place preference (CPP) paradigm are not yet determined. In the present study, we employed SA and CPP tests to investigate the reinforcing effects of the psychostimulant methamphetamine in an SHR substrain obtained from Charles River, Japan (SHR/NCrlCrlj). Concurrent tests were also performed in Wistar rats, the strain representing "normal" heterogeneous population. To address if the presence of ADHD behaviors further increases sensitivity to the rewarding effect of methamphetamine during adolescence, a critical period for the onset of drug abuse, CPP tests were especially conducted in adolescent Wistar and SHR/NCrlCrlj. We found that the SHR/NCrlCrlj also acquired methamphetamine SA and CPP, indicating reinforcing effects of methamphetamine in this ADHD animal model. However, we did not observe increased responsiveness of the SHR/NCrlCrlj to methamphetamine in both SA and CPP assays. This indicates that the reinforcing effects of methamphetamine may be similar in strains and that the SHR/NCrlCrlj may not adequately model ADHD and increased sensitivity to methamphetamine
Akt regulates the expression of MafK, synaptotagmin I, and syntenin-1, which play roles in neuronal function
<p>Abstract</p> <p>Background</p> <p>Akt regulates various cellular processes, including cell growth, survival, and metabolism. Recently, Akt's role in neurite outgrowth has also emerged. We thus aimed to identify neuronal function-related genes that are regulated by Akt.</p> <p>Methods</p> <p>We performed suppression subtractive hybridization on two previously established PC12 sublines, one of which overexpresses the wild-type (WT) form and the other, the dominant-negative (DN) form of Akt. These sublines respond differently to NGF's neuronal differentiation effect.</p> <p>Results</p> <p>A variety of genes was identified and could be classified into several functional groups, one of which was developmental processes. Two genes involved in neuronal differentiation and function were found in this group. v-Maf musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) induces the neuronal differentiation of PC12 cells and immature telencephalon neurons, and synaptotagmin I (SytI) is essential for neurotransmitter release. Another gene, <it>syntenin-1 </it>(<it>Syn-1</it>) was also recognized in the same functional group into which <it>MafK </it>and <it>SytI </it>were classified. Syn-1 has been reported to promote the formation of membrane varicosities in neurons. Quantitative reverse transcription polymerase chain reaction analyses show that the transcript levels of these three genes were lower in PC12 (WT-Akt) cells than in parental PC12 and PC12 (DN-Akt) cells. Furthermore, treatment of PC12 (WT-Akt) cells with an Akt inhibitor resulted in the increase of the expression of these genes and the improvement of neurite outgrowth. These results indicate that dominant-negative or pharmacological inhibition of Akt increases the expression of <it>MafK</it>, <it>SytI</it>, and <it>Syn-1 </it>genes. Using lentiviral shRNA to knock down endogenous Syn-1 expression, we demonstrated that Syn-1 promotes an increase in the numbers of neurites and branches.</p> <p>Conclusions</p> <p>Taken together, these results indicate that Akt negatively regulates the expression of <it>MafK</it>, <it>SytI</it>, and <it>Syn-1 </it>genes that all participate in regulating neuronal integrity in some way or another.</p
Valproic acid inhibits neural progenitor cell death by activation of NF-ÎșB signaling pathway and up-regulation of Bcl-XL
Abstract
Background
At the beginning of neurogenesis, massive brain cell death occurs and more than 50% of cells are eliminated by apoptosis along with neuronal differentiation. However, few studies were conducted so far regarding the regulation of neural progenitor cells (NPCs) death during development. Because of the physiological role of cell death during development, aberration of normal apoptotic cell death is detrimental to normal organogenesis.
Apoptosis occurs in not only neuron but also in NPCs and neuroblast. When growth and survival signals such as EGF or LIF are removed, apoptosis is activated as well as the induction of differentiation. To investigate the regulation of cell death during developmental stage, it is essential to investigate the regulation of apoptosis of NPCs.
Methods
Neural progenitor cells were cultured from E14 embryonic brains of Sprague-Dawley rats. For in vivo VPA animal model, pregnant rats were treated with VPA (400 mg/kg S.C.) diluted with normal saline at E12. To analyze the cell death, we performed PI staining and PARP and caspase-3 cleavage assay. Expression level of proteins was investigated by Western blot and immunocytochemical assays. The level of mRNA expression was investigated by RT-PCR. Interaction of Bcl-XL gene promoter and NF-ÎșB p65 was investigated by ChIP assay.
Results
In this study, FACS analysis, PI staining and PARP and caspase-3 cleavage assay showed that VPA protects cultured NPCs from cell death after growth factor withdrawal both in basal and staurosporine- or hydrogen peroxide-stimulated conditions. The protective effect of prenatally injected VPA was also observed in E16 embryonic brain. Treatment of VPA decreased the level of IÎșBα and increased the nuclear translocation of NF-ÎșB, which subsequently enhanced expression of anti-apoptotic protein Bcl-XL.
Conclusion
To the best of our knowledge, this is the first report to indicate the reduced death of NPCs by VPA at developmentally critical periods through the degradation of IÎșBα and the activation of NF-ÎșB signaling. The reduced NPCs death might underlie the neurodevelopmental defects collectively called fetal valproate syndrome, which shows symptoms such as mental retardation and autism-like behavior.
</jats:sec
Semantically enabled and statistically supported biological hypothesis testing with tissue microarray databases
Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin film
Transition metal oxide thin films show versatile electrical, magnetic, and
thermal properties which can be tailored by deliberately introducing
macroscopic grain boundaries via polycrystalline solids. In this study, we
focus on the modification of the magnetic and thermal transport properties by
fabricating single- and polycrystalline epitaxial SrRuO3 thin films using
pulsed laser epitaxy. Using epitaxial stabilization technique with atomically
flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin
film with crystalline quality of each grain comparable to that of
single-crystalline counterpart is realized. In particular, alleviated
compressive strain near the grain boundaries due to coalescence is evidenced
structurally, which induced enhancement of ferromagnetic ordering of the
polycrystalline epitaxial thin film. The structural variations associated with
the grain boundaries further reduce the thermal conductivity without
deteriorating the electronic transport, and lead to enhanced thermoelectric
efficiency in the epitaxial polycrystalline thin films, compared with their
single-crystalline counterpart.Comment: 24 pages, 5 figure
- âŠ