2 research outputs found

    Development of lower limb rehabilitation evaluation system based on virtual reality technology

    Get PDF
    Nowadays, with the development of the proportion of the elderly population in the world, several problems caused by the population aging gradually into people's horizons. One of the biggest problems plagued the vast majority of the elderly is hemiplegia, which leads to the vigorous development of the physical therapists. However, these traditional methods of physical therapy mainly rely on the skill of the physical therapists. In order to make up the defects of traditional methods, many research groups have developed different kinds of robots for lower limb rehabilitation training but most of them can only realize passive training which cannot adopt rehabilitation training based on the patients' individual condition effectively and they do not have a rehabilitation evaluation system to assess the real time training condition of the hemiplegic patients effectively. In order to solve the problems above, this paper proposed a lower limb rehabilitation evaluation system which is based on the virtual reality technology. This system has an easy observation of the human-computer interaction interface and the doctor is able to adjust the rehabilitation training direct at different patients in different rehabilitation stage based on this lower limb rehabilitation evaluation system. Compared with current techniques, this novel lower limb rehabilitation evaluation system is expected to have significant impacts in medical rehabilitation robot field

    Additional file 1 of Using machine learning to determine age over 16 based on development of third molar and periodontal ligament of second molar

    No full text
    Additional file 1: Supplementary Table S1. List of the tuned hyperparameters for each Machine Learning algorithm. For each hyperparameter, the values inside square brackets were explored by Grid Search. Supplementary Table S2. Parameter estimates for logistic model for I3M
    corecore