1 research outputs found

    Hybridized Plasmonic Gap Mode of Gold Nanorod on Mirror Nanoantenna for Spectrally Tailored Fluorescence Enhancement

    No full text
    Plasmonic nanoparticle on mirror antennas with sub-10 nm gaps have shown the great potential in nanophotonic applications because they offer tightly confined electric field in the gap and resultant large Purcell factors. However, in a nanosphere on mirror (NSoM) structure being studied experimentally, the degree of freedom of the antennas in terms of spectral and polarization control is limited. In this work, we report spectral shaping and polarization control of Purcell-enhanced fluorescence by the gap plasmon modes of an anisotropic gold (Au) nanorod on a mirror (NRoM) antenna. Systematic numerical calculations demonstrate the richer resonance behaviors of a NRoM antenna than a NSoM antenna due to the hybridization of the bright and dark modes. We fabricate a NRoM antenna by placing a Au NR on an ultraflat Au film via a mono-, double-, or quadruple-layers of light emitting quantum dots (QDs) (3 nm in diameter). The scattering spectra of single NRoM antennas coincide very well with those of the numerical simulations. We demonstrate large enhancement (>900-fold) and strong shaping of the luminescence from QDs in the gap due to the coupling with the hybridized mode of a NRoM antenna. We also show that the polarization property of the emission is controlled by that of the mode coupled
    corecore