4 research outputs found

    Anisotropically Enhanced Nonlinear Optical Properties of Ensembles of Gold Nanorods Electrospun in Polymer Nanofiber Film

    No full text
    Polymeric nanofibers containing gold nanorods (GNRs) are aligned in a uniform orientation through electrospinning. The dispersive and absorptive parts of the third-order optical nonlinear optical refractive index of the composite film measured by polarization dependent <i>z</i>-scan method are demonstrated to be anisotropically enhanced. Anisotropic optical response of the aligned GNRs and its connection with the ultrafast electron dynamics are discussed in light of the results of resonant femtosecond pump–probe experiments. The significant appearance of anisotropic nonlinear optical properties of ensembles of GNRs is attributed to the sensitive excitation of longitudinal surface plasmon resonance (LSPR) of highly aligned GNRs. For the macroscopic applications of ensembles of GNRs, such as passive mode-locking and all-optical switching, the experimental results demonstrate that the alignment of GNRs through electrospinning should be very high efficient, and economic

    Ultrasensitive Polarized Up-Conversion of Tm<sup>3+</sup>–Yb<sup>3+</sup> Doped β‑NaYF<sub>4</sub> Single Nanorod

    No full text
    Up-conversion luminescence in rare earth ions (REs) doped nanoparticles has attracted considerable research attention for the promising applications in solid-state lasers, three-dimensional displays, solar cells, biological imaging, and so forth. However, there have been no reports on REs doped nanoparticles to investigate their polarized energy transfer up-conversion, especially for single particle. Herein, the polarized energy transfer up-conversion from REs doped fluoride nanorods is demonstrated in a single particle spectroscopy mode for the first time. Unique luminescent phenomena, for example<i>,</i> sharp energy level split and singlet-to-triplet transitions at room temperature, multiple discrete luminescence intensity periodic variation with polarization direction, are observed upon excitation with 980 nm linearly polarized laser. Furthermore, nanorods with the controllable aspect ratio and symmetry are fabricated for analysis of the mechanism of polarization anisotropy. The comparative experiments suggest that intraions transition properties and crystal local symmetry dominate the polarization anisotropy, which is also confirmed by density functional theory calculations. Taking advantage of the REs based up-conversion, potential application in polarized microscopic multi-information transportation is suggested for the polarization anisotropy from REs doped fluoride single nanorod or nanorod array

    Efficient Dual-Modal NIR-to-NIR Emission of Rare Earth Ions Co-doped Nanocrystals for Biological Fluorescence Imaging

    No full text
    A novel approach has been developed for the realization of efficient near-infrared to near-infrared (NIR-to-NIR) upconversion and down-shifting emission in nanophosphors. The efficient dual-modal NIR-to-NIR emission is realized in a β-NaGdF<sub>4</sub>/Nd<sup>3+</sup>@NaGdF<sub>4</sub>/Tm<sup>3+</sup>–Yb<sup>3+</sup> core–shell nanocrystal by careful control of the identity and concentration of the doped rare earth (RE) ion species and by manipulation of the spatial distributions of these RE ions. The photoluminescence results reveal that the emission efficiency increases at least 2-fold when comparing the materials synthesized in this study with those synthesized through traditional approaches. Hence, these core–shell structured nanocrystals with novel excitation and emission behaviors enable us to obtain tissue fluorescence imaging by detecting the upconverted and down-shifted photoluminescence from Tm<sup>3+</sup> and Nd<sup>3+</sup> ions, respectively. The reported approach thus provides a new route for the realization of high-yield emission from RE ion doped nanocrystals, which could prove to be useful for the design of optical materials containing other optically active centers

    Luffa-Sponge-Like Glass–TiO<sub>2</sub> Composite Fibers as Efficient Photocatalysts for Environmental Remediation

    No full text
    Structural design of photocatalysts is of great technological importance for practical applications. A rational design of architecture can not only promote the synthetic performance of photocatalysts but also bring convenience in their application procedure. Nanofibers have been established as one of the most ideal architectures of photocatalysts. However, simultaneous optimization of the photocatalytic efficiency, mechanical strength, and thermal/chemical tolerance of nanofibrous photocatalysts remains a big challenge. Here, we demonstrate a novel design of TiO<sub>2</sub>–SiO<sub>2</sub> composite fiber as an efficient photocatalyst with excellent synthetic performance. Core–shell mesoporous SiO<sub>2</sub> fiber with high flexibility was employed as the backbone for supporting ultrasmall TiO<sub>2</sub> nanowhiskers of the anatase phase, constructing core@double-shell fiber with luffa-sponge-like appearance. Benefitting from their continuously long fibrous morphology, highly porous structure, and completely inorganic nature, the TiO<sub>2</sub>–SiO<sub>2</sub> composite fibers simultaneously possess high photocatalytic reactivity, good flexibility, and excellent thermal and chemical stability. This novel architecture of TiO<sub>2</sub>–SiO<sub>2</sub> glass composite fiber may find extensive use in the environment remediation applications
    corecore