14 research outputs found

    Optimization of Alkyl Side Chain Length in Polyimide for Gate Dielectrics to Achieve High Mobility and Outstanding Operational Stability in Organic Transistors

    No full text
    Alkyl chain modification strategies in both organic semiconductors and inorganic dielectrics play a crucial role in improving the performance of organic thin-film transistors (OTFTs). Polyimide (PI) and its derivatives have received extensive attention as dielectrics for application in OTFTs because of flexibility, high-temperature resistance, and low cost. However, low-temperature solution processing PI-based gate dielectric for flexible OTFTs with high mobility, low operating voltage, and high operational stability remains an enormous challenge. Furthermore, even though di-n-decyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT) is known to have very high mobility as an air-stable and high-performance organic semiconductor, the C10-DNTT-based TFTs on the PI gate dielectrics still showed relatively low mobility. Here, inspired by alkyl side chain engineering, we design and synthesize a series of PI materials with different alkyl side chain lengths and systematically investigate the PI surface properties and the evolution of organic semiconductor morphology deposited on PI surfaces during the variation of alkyl side chain lengths. It is found that the alkyl side chain length has a critical influence on the PI surface properties, as well as the grain size and molecular orientation of semiconductors. Good field-effect characteristics are obtained with high mobilities (up to 1.05 and 5.22 cm2/Vs, which are some of the best values reported to date), relatively low operating voltage, hysteresis-free behavior, and high operational stability in OTFTs. These results suggest that the strategy of optimizing alkyl side-chain lengths opens up a new research avenue for tuning semiconductor growth to enable high mobility and outstanding operational stability of PI-based OTFTs

    Antibacterial and Hemocompatibility Switchable Polypropylene Nonwoven Fabric Membrane Surface

    No full text
    In this article, a facile approach to fabricate a biofunctional polypropylene nonwoven fabric membrane (PP NWF) with a switchable surface from antibacterial property to hemocompatibility is presented. In the first step, a cationic carboxybetaine ester monomer, [(2-(methacryboxy) ethyl)]-<i>N</i>,<i>N</i>-dimethylamino-ethylammonium bromide, methyl ester (CABA-1-ester) was synthesized. Subsequently, this monomer was introduced on the PP NWF surface via plasma pretreatment and a UV-induced graft polymerization technique. Finally, a switchable surface from antibacterial property to hemocompatibility was easily realized by hydrolysis of poly­(CABA-1-ester) moieties on the PP NWF surface under mild conditions. Surface hydrolysis behaviors under different pH conditions were investigated. These PP NWFs grafted with poly­(CABA-1-ester) segments can cause significant suppression of S. aureus proliferation; after hydrolysis, these surfaces covered by poly­[(2-(methacryloxy) ethyl)] carboxybetaine (poly­(CABA)) chains exhibited obvious reduction in protein adsorption and platelet adhesion, and remarkably enhanced antithrombotic properties. This strategy demonstrated that a switchable PP NWF surface from antibacterial property to hemocompatibility was easily developed by plasma pretreatment and UV-induced surface graft polymerization and that this surface may become an attractive platform for a range of biomedical applications

    Facile Fabrication of Lubricant-Infused Wrinkling Surface for Preventing Thrombus Formation and Infection

    No full text
    Despite the advanced modern biotechniques, thrombosis and bacterial infection of biomedical devices remain common complications that are associated with morbidity and mortality. Most antifouling surfaces are in solid form and cannot simultaneously fulfill the requirements for antithrombosis and antibacterial efficacy. In this work, we present a facile strategy to fabricate a slippery surface. This surface is created by combining photografting polymerization with osmotically driven wrinkling that can generate a coarse morphology, and followed by infusing with fluorocarbon liquid. The lubricant-infused wrinkling slippery surface can greatly prevent protein attachment, reduce platelet adhesion, and suppress thrombus formation in vitro. Furthermore, <i>E. coli</i> and <i>S. aureus</i> attachment on the slippery surfaces is reduced by ∼98.8% and ∼96.9% after 24 h incubation, relative to poly­(styrene-<i>b</i>-isobutylene-<i>b</i>-styrene) (SIBS) references. This slippery surface is biocompatible and has no toxicity to L929 cells. This surface-coating strategy that effectively reduces thrombosis and the incidence of infection will greatly decrease healthcare costs

    Degradable Nanohydroxyapatite-Reinforced Superglue for Rapid Bone Fixation and Promoted Osteogenesis

    No full text
    Bone glue with robust adhesion is crucial for treating complicated bone fractures, but it remains a formidable challenge to develop a “true” bone glue with high adhesion strength, degradability, bioactivity, and satisfactory operation time in clinical scenarios. Herein, inspired by the hydroxyapatite and collagen matrix composition of natural bone, we constructed a nanohydroxyapatite (nHAP) reinforced osteogenic backbone-degradable superglue (O-BDSG) by in situ radical ring-opening polymerization. nHAP significantly enhances adhesive cohesion by synergistically acting as noncovalent connectors between polymer chains and increasing the molecular weight of the polymer matrix. Moreover, nHAP endows the glue with bioactivity to promote osteogenesis. The as-prepared glue presented a 9.79 MPa flexural adhesion strength for bone, 4.7 times that without nHAP, and significantly surpassed commercial cyanoacrylate (0.64 MPa). O-BDSG exhibited degradability with 51% mass loss after 6 months of implantation. In vivo critical defect and tibia fracture models demonstrated the promoted osteogenesis of the O-BDSG, with a regenerated bone volume of 75% and mechanical function restoration to 94% of the native tibia after 8 weeks. The glue can be flexibly adapted to clinical scenarios with a curing time window of about 3 min. This work shows promising prospects for clinical application in orthopedic surgery and may inspire the design and development of bone adhesives

    Degradable Nanohydroxyapatite-Reinforced Superglue for Rapid Bone Fixation and Promoted Osteogenesis

    No full text
    Bone glue with robust adhesion is crucial for treating complicated bone fractures, but it remains a formidable challenge to develop a “true” bone glue with high adhesion strength, degradability, bioactivity, and satisfactory operation time in clinical scenarios. Herein, inspired by the hydroxyapatite and collagen matrix composition of natural bone, we constructed a nanohydroxyapatite (nHAP) reinforced osteogenic backbone-degradable superglue (O-BDSG) by in situ radical ring-opening polymerization. nHAP significantly enhances adhesive cohesion by synergistically acting as noncovalent connectors between polymer chains and increasing the molecular weight of the polymer matrix. Moreover, nHAP endows the glue with bioactivity to promote osteogenesis. The as-prepared glue presented a 9.79 MPa flexural adhesion strength for bone, 4.7 times that without nHAP, and significantly surpassed commercial cyanoacrylate (0.64 MPa). O-BDSG exhibited degradability with 51% mass loss after 6 months of implantation. In vivo critical defect and tibia fracture models demonstrated the promoted osteogenesis of the O-BDSG, with a regenerated bone volume of 75% and mechanical function restoration to 94% of the native tibia after 8 weeks. The glue can be flexibly adapted to clinical scenarios with a curing time window of about 3 min. This work shows promising prospects for clinical application in orthopedic surgery and may inspire the design and development of bone adhesives

    Liquid-Infused Poly(styrene‑<i>b</i>‑isobutylene‑<i>b</i>‑styrene) Microfiber Coating Prevents Bacterial Attachment and Thrombosis

    No full text
    Infection and thrombosis associated with medical implants cause significant morbidity and mortality worldwide. As we know, current technologies to prevent infection and thrombosis may cause severe side effects. To overcome these complications without using antimicrobial and anticoagulant drugs, we attempt to prepare a liquid-infused poly­(styrene-<i>b</i>-isobutylene-<i>b</i>-styrene) (SIBS) microfiber coating, which can be directly coated onto medical devices. Notably, the SIBS microfiber was fabricated through solution blow spinning. Compared to electrospinning, the solution blow spinning method is faster and less expensive, and it is easy to spray fibers onto different targets. The lubricating liquids then wick into and strongly adhere the microfiber coating. These slippery coatings can effectively suppress blood cell adhesion, reduce hemolysis, and inhibit blood coagulation in vitro. In addition, <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>) on the lubricant infused coatings slides readily, and no visible residue is left after tilting. We furthermore confirm that the lubricants have no effects on bacterial growth. The slippery coatings are also not cytotoxic to L929 cells. This liquid-infused SIBS microfiber coating could reduce the infection and thrombosis of medical devices, thus benefiting human health

    Liquid-Infused Poly(styrene‑<i>b</i>‑isobutylene‑<i>b</i>‑styrene) Microfiber Coating Prevents Bacterial Attachment and Thrombosis

    No full text
    Infection and thrombosis associated with medical implants cause significant morbidity and mortality worldwide. As we know, current technologies to prevent infection and thrombosis may cause severe side effects. To overcome these complications without using antimicrobial and anticoagulant drugs, we attempt to prepare a liquid-infused poly­(styrene-<i>b</i>-isobutylene-<i>b</i>-styrene) (SIBS) microfiber coating, which can be directly coated onto medical devices. Notably, the SIBS microfiber was fabricated through solution blow spinning. Compared to electrospinning, the solution blow spinning method is faster and less expensive, and it is easy to spray fibers onto different targets. The lubricating liquids then wick into and strongly adhere the microfiber coating. These slippery coatings can effectively suppress blood cell adhesion, reduce hemolysis, and inhibit blood coagulation in vitro. In addition, <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>) on the lubricant infused coatings slides readily, and no visible residue is left after tilting. We furthermore confirm that the lubricants have no effects on bacterial growth. The slippery coatings are also not cytotoxic to L929 cells. This liquid-infused SIBS microfiber coating could reduce the infection and thrombosis of medical devices, thus benefiting human health

    Nuclease-Functionalized Poly(Styrene‑<i>b</i>‑isobutylene‑<i>b</i>‑styrene) Surface with Anti-Infection and Tissue Integration Bifunctions

    No full text
    Hydrophobic thermoplastic elastomers, e.g., poly­(styrene-<i>b</i>-isobutylene-<i>b</i>-styrene) (SIBS), have found various in vivo biomedical applications. It has long been recognized that biomaterials can be adversely affected by bacterial contamination and clinical infection. However, inhibiting bacterial colonization while simultaneously preserving or enhancing tissue-cell/material interactions is a great challenge. Herein, SIBS substrates were functionalized with nucleases under mild conditions, through polycarboxylate grafts as intermediate. It was demonstrated that the nuclease-modified SIBS could effectively prevent bacterial adhesion and biofilm formation. Cell adhesion assays confirmed that nuclease coatings generally had no negative effects on L929 cell adhesion, compared with the virgin SIBS reference. Therefore, the as-reported nuclease coating may present a promising approach to inhibit bacterial infection, while preserving tissue-cell integration on polymeric biomaterials

    Liquid-Infused Poly(styrene‑<i>b</i>‑isobutylene‑<i>b</i>‑styrene) Microfiber Coating Prevents Bacterial Attachment and Thrombosis

    No full text
    Infection and thrombosis associated with medical implants cause significant morbidity and mortality worldwide. As we know, current technologies to prevent infection and thrombosis may cause severe side effects. To overcome these complications without using antimicrobial and anticoagulant drugs, we attempt to prepare a liquid-infused poly­(styrene-<i>b</i>-isobutylene-<i>b</i>-styrene) (SIBS) microfiber coating, which can be directly coated onto medical devices. Notably, the SIBS microfiber was fabricated through solution blow spinning. Compared to electrospinning, the solution blow spinning method is faster and less expensive, and it is easy to spray fibers onto different targets. The lubricating liquids then wick into and strongly adhere the microfiber coating. These slippery coatings can effectively suppress blood cell adhesion, reduce hemolysis, and inhibit blood coagulation in vitro. In addition, <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>) on the lubricant infused coatings slides readily, and no visible residue is left after tilting. We furthermore confirm that the lubricants have no effects on bacterial growth. The slippery coatings are also not cytotoxic to L929 cells. This liquid-infused SIBS microfiber coating could reduce the infection and thrombosis of medical devices, thus benefiting human health

    Fabrication of a Detection Platform with Boronic-Acid-Containing Zwitterionic Polymer Brush

    No full text
    Development of technologies for biomedical detection platform is critical to meet the global challenges of various disease diagnoses, especially for point-of-use applications. Because of its natural simplicity, effectiveness, and easy repeatability, random covalent-binding technique is widely adopted in antibody immobilization. However, its antigen-binding capacity is relatively low when compared to site-specific immobilization of antibody. Herein, we report that a detection platform modified with boronic acid (BA)-containing sulfobetaine-based polymer brush. Mainly because of the advantage of oriented immobilization of antibody endowed with BA-containing three-dimensional polymer brush architecture, the platform had a high antigen-binding capacity. Notably, nonspecific protein adsorption was also suppressed by the zwitterionic pendants, thus greatly enhanced signal-to-noise (S/N) values for antigen recognition. Furthermore, antibodies captured by BA pendants could be released in dissociation media. This new platform is promising for potential applications in immunoassays
    corecore