37 research outputs found

    Hard-gapped Holographic Superconductors

    Get PDF
    In this work we discuss the zero temperature limit of a "p-wave" holographic superconductor. The bulk description consists of a non-Abelian SU(2) gauge fields minimally coupled to gravity. We numerically construct the zero temperature solution which is the gravity dual of the superconducting ground state of the "p-wave" holographic superconductors. The solution is a smooth soliton with zero horizon size and shows an emergent conformal symmetry in the IR. We found the expected superconducting behavior. Using the near horizon analysis we show that the system has a "hard gap" for the relevant gauge field fluctuations. At zero temperature the real part of the conductivity is zero for an excitation frequency less than the gap frequency. This is in contrast with what has been observed in similar scalar- gravity-gauge systems (holographic superconductors). We also discuss the low but finite temperature behavior of our solution.Comment: 9 pages, latex, 6 figure

    Holographic Non-Fermi Liquid in a Background Magnetic Field

    Full text link
    We study the effects of a non-zero magnetic field on a class of 2+1 dim non-Fermi liquids, recently found in 0903.2477 by considering properties of a fermionic probe in an extremal AdS^4 black hole background. Introducing a similar fermionic probe in a dyonic AdS^4 black hole geometry, we find that the effect of a magnetic field could be incorporated in a rescaling of the probe fermion's charge. From this simple fact, we observe interesting effects like gradual disappearance of the Fermi surface and quasi particle peaks at large magnetic fields and changes in other properties of the system. We also find Landau level like structures and oscillatory phenomena similar to the de Haas-van Alphen effect.Comment: 20 pages, latex, 6 figure

    Comments on Non-Fermi Liquids in the Presence of a Condensate

    Full text link
    We study the effects of a scalar condensate on a class of 2+1 dimensional non- Fermi liquids by introducing fermionic probes in the corresponding asymptotically AdS4 black hole backgrounds. For the range of parameters and couplings we consider we find gapless fermionic excitations whose properties are model-dependent.Comment: 13 page

    Little String Theory from Double-Scaling Limits of Field Theories

    Full text link
    We show that little string theory on S^5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on RxS^2 and RxS^3/Z_k. By matching the gauge theory parameters with those in the gravity duals found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of NS5-brane degrees of freedom. We find that for the theory on RxS^2, the 't Hooft coupling must be scaled like ln^3(N), and on RxS^3/Z_k, like ln^2(N). Accordingly, taking these limits in these field theories gives Lagrangian definitions of little string theory on S^5.Comment: 16 pages, 5 figures. Minor change

    Superconductivity from D3/D7: Holographic Pion Superfluid

    Full text link
    We show that a D3/D7 system (at zero quark mass limit) at finite isospin chemical potential goes through a superconductor (superfluid) like phase transition. This is similar to a flavored superfluid phase studied in QCD literature, where mesonic operators condensate. We have studied the frequency dependent conductivity of the condensate and found a delta function pole in the zero frequency limit. This is an example of superconductivity in a string theory context. Consequently we have found a superfluid/supercurrent type solution and studied the associated phase diagram. The superconducting transition changes from second order to first order at a critical superfluid velocity. We have studied various properties of the superconducting system like superfluid density, energy gap, second sound etc. We investigate the possibility of the isospin chemical potential modifying the embedding of the flavor branes by checking whether the transverse scalars also condense at low temperature. This however does not seem to be the case.Comment: 18 pages, 8 figures, revtex

    Cold Nuclear Matter In Holographic QCD

    Full text link
    We study the Sakai-Sugimoto model of holographic QCD at zero temperature and finite chemical potential. We find that as the baryon chemical potential is increased above a critical value, there is a phase transition to a nuclear matter phase characterized by a condensate of instantons on the probe D-branes in the string theory dual. As a result of electrostatic interactions between the instantons, this condensate expands towards the UV when the chemical potential is increased, giving a holographic version of the expansion of the Fermi surface. We argue based on properties of instantons that the nuclear matter phase is necessarily inhomogeneous to arbitrarily high density. This suggests an explanation of the "chiral density wave" instability of the quark Fermi surface in large N_c QCD at asymptotically large chemical potential. We study properties of the nuclear matter phase as a function of chemical potential beyond the transition and argue in particular that the model can be used to make a semi-quantitative prediction of the binding energy per nucleon for nuclear matter in ordinary QCD.Comment: 31 pages, LaTeX, 1 figure, v2: some formulae corrected, qualitative results unchange
    corecore