146 research outputs found
Blind Demixing for Low-Latency Communication
In the next generation wireless networks, lowlatency communication is
critical to support emerging diversified applications, e.g., Tactile Internet
and Virtual Reality. In this paper, a novel blind demixing approach is
developed to reduce the channel signaling overhead, thereby supporting
low-latency communication. Specifically, we develop a low-rank approach to
recover the original information only based on a single observed vector without
any channel estimation. Unfortunately, this problem turns out to be a highly
intractable non-convex optimization problem due to the multiple non-convex
rankone constraints. To address the unique challenges, the quotient manifold
geometry of product of complex asymmetric rankone matrices is exploited by
equivalently reformulating original complex asymmetric matrices to the
Hermitian positive semidefinite matrices. We further generalize the geometric
concepts of the complex product manifolds via element-wise extension of the
geometric concepts of the individual manifolds. A scalable Riemannian
trust-region algorithm is then developed to solve the blind demixing problem
efficiently with fast convergence rates and low iteration cost. Numerical
results will demonstrate the algorithmic advantages and admirable performance
of the proposed algorithm compared with the state-of-art methods.Comment: 14 pages, accepted by IEEE Transaction on Wireless Communicatio
Scalable Coordinated Beamforming for Dense Wireless Cooperative Networks
To meet the ever growing demand for both high throughput and uniform coverage
in future wireless networks, dense network deployment will be ubiquitous, for
which co- operation among the access points is critical. Considering the
computational complexity of designing coordinated beamformers for dense
networks, low-complexity and suboptimal precoding strategies are often adopted.
However, it is not clear how much performance loss will be caused. To enable
optimal coordinated beamforming, in this paper, we propose a framework to
design a scalable beamforming algorithm based on the alternative direction
method of multipliers (ADMM) method. Specifically, we first propose to apply
the matrix stuffing technique to transform the original optimization problem to
an equivalent ADMM-compliant problem, which is much more efficient than the
widely-used modeling framework CVX. We will then propose to use the ADMM
algorithm, a.k.a. the operator splitting method, to solve the transformed
ADMM-compliant problem efficiently. In particular, the subproblems of the ADMM
algorithm at each iteration can be solved with closed-forms and in parallel.
Simulation results show that the proposed techniques can result in significant
computational efficiency compared to the state- of-the-art interior-point
solvers. Furthermore, the simulation results demonstrate that the optimal
coordinated beamforming can significantly improve the system performance
compared to sub-optimal zero forcing beamforming
- …