220 research outputs found

    Energy-recycling Blockchain with Proof-of-Deep-Learning

    Full text link
    An enormous amount of energy is wasted in Proofof-Work (PoW) mechanisms adopted by popular blockchain applications (e.g., PoW-based cryptocurrencies), because miners must conduct a large amount of computation. Owing to this, one serious rising concern is that the energy waste not only dilutes the value of the blockchain but also hinders its further application. In this paper, we propose a novel blockchain design that fully recycles the energy required for facilitating and maintaining it, which is re-invested to the computation of deep learning. We realize this by proposing Proof-of-Deep-Learning (PoDL) such that a valid proof for a new block can be generated if and only if a proper deep learning model is produced. We present a proof-of-concept design of PoDL that is compatible with the majority of the cryptocurrencies that are based on hash-based PoW mechanisms. Our benchmark and simulation results show that the proposed design is feasible for various popular cryptocurrencies such as Bitcoin, Bitcoin Cash, and Litecoin.Comment: 5 page

    Impact of Microscope, Loupes, and Video Displays on Microsurgeons’ risk for Musculoskeletal Injuries

    Get PDF
    Microsurgery is commonly performed with operating microscopes or loupes to repair traumatic injuries, damage from cancer surgery, etc.; however, the prolonged, awkward, and constrained postures from using these equipment puts microsurgeons at risk for musculoskeletal pain and injuries. An alternative heads-up displays may improve surgeons’ ergonomics by allowing microsurgeons to perform the procedure in a more comfortable and ergonomic position. The study compares the effect of microscope, loupes and video displays on postures during microsurgical targeting task. This study incorporated three steps to contrast displays. Firstly, 12 participants wearing six reflective markers completed a surgery simulation using all three displays, and their sagittal planes were video recorded. Secondly, randomly selected frames were captured and coordinates calculated in Matlab. Lastly, angles of interests obtained were compared to suggest the optimal display that demand least stressful postures. The final results indicated that video displays would bring microsurgeons relatively comfort and freedom of postures. Future improvement on ergonomics in microsurgeons can be implemented through design of equipment, tasks and work environments

    Contrastive Image Synthesis and Self-supervised Feature Adaptation for Cross-Modality Biomedical Image Segmentation

    Full text link
    This work presents a novel framework CISFA (Contrastive Image synthesis and Self-supervised Feature Adaptation)that builds on image domain translation and unsupervised feature adaptation for cross-modality biomedical image segmentation. Different from existing works, we use a one-sided generative model and add a weighted patch-wise contrastive loss between sampled patches of the input image and the corresponding synthetic image, which serves as shape constraints. Moreover, we notice that the generated images and input images share similar structural information but are in different modalities. As such, we enforce contrastive losses on the generated images and the input images to train the encoder of a segmentation model to minimize the discrepancy between paired images in the learned embedding space. Compared with existing works that rely on adversarial learning for feature adaptation, such a method enables the encoder to learn domain-independent features in a more explicit way. We extensively evaluate our methods on segmentation tasks containing CT and MRI images for abdominal cavities and whole hearts. Experimental results show that the proposed framework not only outputs synthetic images with less distortion of organ shapes, but also outperforms state-of-the-art domain adaptation methods by a large margin

    Computing-In-Memory Neural Network Accelerators for Safety-Critical Systems: Can Small Device Variations Be Disastrous?

    Full text link
    Computing-in-Memory (CiM) architectures based on emerging non-volatile memory (NVM) devices have demonstrated great potential for deep neural network (DNN) acceleration thanks to their high energy efficiency. However, NVM devices suffer from various non-idealities, especially device-to-device variations due to fabrication defects and cycle-to-cycle variations due to the stochastic behavior of devices. As such, the DNN weights actually mapped to NVM devices could deviate significantly from the expected values, leading to large performance degradation. To address this issue, most existing works focus on maximizing average performance under device variations. This objective would work well for general-purpose scenarios. But for safety-critical applications, the worst-case performance must also be considered. Unfortunately, this has been rarely explored in the literature. In this work, we formulate the problem of determining the worst-case performance of CiM DNN accelerators under the impact of device variations. We further propose a method to effectively find the specific combination of device variation in the high-dimensional space that leads to the worst-case performance. We find that even with very small device variations, the accuracy of a DNN can drop drastically, causing concerns when deploying CiM accelerators in safety-critical applications. Finally, we show that surprisingly none of the existing methods used to enhance average DNN performance in CiM accelerators are very effective when extended to enhance the worst-case performance, and further research down the road is needed to address this problem
    • …
    corecore