67,537 research outputs found

    Numerical simulation of vortex breakdown

    Get PDF
    The breakdown of an isolated axisymmetric vortex embedded in an unbounded uniform flow is examined by numerical integration of the complete Navier-Stokes equations for unsteady axisymmetric flow. Results show that if the vortex strength is small, the solution approaches a steady flow and the vortex is stable. If the strength is large enough, the solution remains unsteady and a recirculating zone will appear near the axis, its form and internal structure resembling those of the axisymmetric breakdown bubbles with multi-cells observed by Faler and Leibovich (1978). For apppropriate combinations of flow parameters, the flow reveals quasi-periodicity. Parallel calculations with the quasi-cylindrical approximation indicate that so far as predicting of breakdown is concerned, its results coincide quite well with the results mentioned above. Both show that the vortex breakdown has little concern with the Reynolds number or with the critical classification of the upstream flow, at least for the lower range of Reynolds numbers

    Expectations for the Difference Between Local and Global Measurements of the Hubble Constant

    Get PDF
    There are irreducible differences between the Hubble constant measured locally and the global value. They are due to density perturbations and finite sample volume (cosmic variance) and finite number of objects in the sample (sampling variance). We quantify these differences for a suite of COBE-normalized CDM models that are consistent with the observed large-scale structure. For small samples of objects that only extend out to 10,000 km/sec, the variance can approach 4%. For the largest samples of Type Ia supernovae (SNeIa), which include about 40 objects and extend out to almost 40,000 km/sec, the variance is 1-2% and is dominated by sampling variance. Sampling and cosmic variance may be an important consideration in comparing local determinations of the Hubble constant with precision determinations of the global value that will be made from high-resolution maps of CBR anisotropy.Comment: 10 pages, Latex, 2 figures, version accepted for Ap.

    Relations between three-point configuration space shear and convergence statistics

    Full text link
    With the growing interest in and ability of using weak lensing studies to probe the non-Gaussian properties of the matter density field, there is an increasing need for the study of suitable statistical measures, e.g. shear three-point statistics. In this paper we establish the relations between the three-point configuration space shear and convergence statistics, which are an important missing link between different weak lensing three-point statistics and provide an alternative way of relating observation and theory. The method we use also allows us to derive the relations between other two- and three-point correlation functions. We show the consistency of the relations obtained with already established results and demonstrate how they can be evaluated numerically. As a direct application, we use these relations to formulate the condition for E/B-mode decomposition of lensing three-point statistics, which is the basis for constructing new three-point statistics which allow for exact E/B-mode separation. Our work applies also to other two-dimensional polarization fields such as that of the Cosmic Microwave Background.Comment: 17 pages, 5 figures, submitted to A&
    corecore