373 research outputs found
Maximally Star-Forming Galactic Disks I. Starburst Regulation Via Feedback-Driven Turbulence
Star formation rates in the centers of disk galaxies often vastly exceed
those at larger radii. We investigate the idea that these central starbursts
are self-regulated, with the momentum flux injected to the ISM by star
formation balancing the gravitational force confining the gas. For most
starbursts, supernovae are the largest contributor to the momentum flux, and
turbulence provides the main pressure support for the predominantly-molecular
ISM. If the momentum feedback per stellar mass formed is p_*/m_* ~ 3000 km/s,
the predicted star formation rate is Sigma_SFR=2 pi G Sigma^2 m_*/p_*
~0.1(Sigma/100Msun/pc^2)^2 Msun/kpc^2/yr in regions where gas dominates the
vertical gravity. We compare this prediction with numerical simulations of
vertically-resolved disks that model star formation including feedback, finding
good agreement for gas surface densities Sigma ~ 10^2-10^3 Msun/pc^2. We also
compare to a compilation of star formation rates and gas contents from local
and high-redshift galaxies (both mergers and normal galaxies), finding good
agreement provided that X_CO decreases weakly as Sigma and Sigma_SFR increase.
Star formation rates in dense, turbulent gas are also expected to depend on the
gravitational free-fall time; if the efficiency per free-fall time is
epsilon_ff ~ 0.01, the turbulent velocity dispersion driven by feedback is
expected to be v_z = 0.4 epsilon_ff p_*/m_* ~ 10 km/s, relatively independent
of Sigma or Sigma_SFR. Turbulence-regulated starbursts (controlled by kinetic
momentum feedback) are part of the larger scheme of self-regulation;
primarily-atomic low-Sigma outer disks may have star formation regulated by UV
heating feedback, whereas regions at extremely high Sigma may be regulated by
feedback of radiation that is reprocessed into trapped IR.Comment: 35 pages, 5 figures; accepted by the Ap
Interpreting the sub-linear Kennicutt-Schmidt relationship: The case for diffuse molecular gas
Recent statistical analysis of two extragalactic observational surveys
strongly indicate a sublinear Kennicutt-Schmidt (KS) relationship between the
star formation rate (Sigsfr) and molecular gas surface density (Sigmol). Here,
we consider the consequences of these results in the context of common
assumptions, as well as observational support for a linear relationship between
Sigsfr and the surface density of dense gas. If the CO traced gas depletion
time (tau_mol) is constant, and if CO only traces star forming giant molecular
clouds (GMCs), then the physical properties of each GMC must vary, such as the
volume densities or star formation rates. Another possibility is that the
conversion between CO luminosity and Sigmol, the XCO factor, differs from
cloud-to-cloud. A more straightforward explanation is that CO permeates the
hierarchical ISM, including the filaments and lower density regions within
which GMCs are embedded. A number of independent observational results support
this description, with the diffuse gas comprising at least 30% of the total
molecular content. The CO bright diffuse gas can explain the sublinear KS
relationship, and consequently leads to an increasing tau_mol with Sigmol. If
Sigsfr linearly correlates with the dense gas surface density, a sublinear KS
relationship indicates that the fraction of diffuse gas fdiff grows with
Sigmol. In galaxies where Sigmol falls towards the outer disk, this description
suggests that fdiff also decreases radially.Comment: 8 pages, 4 figures, to appear in MNRAS, comments welcom
The Effect of Noise on the Dust Temperature - Spectral Index Correlation
We investigate how uncertainties in flux measurements affect the results from
modified blackbody SED fits. We show that an inverse correlation between the
dust temperature T and spectral index (beta) naturally arises from least
squares fits due to the uncertainties, even for sources with a single T and
beta. Fitting SEDs to noisy fluxes solely in the Rayleigh-Jeans regime produces
unreliable T and beta estimates. Thus, for long wavelength observations (lambda
>~ 200 micron), or for warm sources (T >~ 60 K), it becomes difficult to
distinguish sources with different temperatures. We assess the role of noise in
recent observational results that indicate an inverse and continuously varying
T - beta relation. Though an inverse and continuous T - beta correlation may be
a physical property of dust in the ISM, we find that the observed inverse
correlation may be primarily due to noise.Comment: 14 pages, including 5 Figures; Accepted for publication in Ap
Global Modeling of Spur Formation in Spiral Galaxies
We investigate the formation of substructure in spiral galaxies using global
MHD simulations, including gas self-gravity. Our models extend previous local
models by Kim and Ostriker (2002) by including the full effects of curvilinear
coordinates, a realistic log-spiral perturbation, self-gravitational
contribution from 5 radial wavelengths of the spiral shock, and variation of
density and epicyclic frequency with radius. We show that with realistic Toomre
Q values, self-gravity and galactic differential rotation produce filamentary
gaseous structures with kpc-scale separations, regardless of the strength -- or
even presence -- of a stellar spiral potential. However, the growth of sheared
features distinctly associated with the spiral arms, described as spurs or
feathers in optical and IR observations of many spiral galaxies, requires a
sufficiently strong spiral potential in self gravitating models. Unlike
independently-growing ''background'' filaments, the orientation of arm spurs
depends on galactic location. Inside corotation, spurs emanate outward, on the
convex side of the arm; outside corotation, spurs grow inward, on the concave
side of the arm. Based on spacing, orientation, and the relation to arm clumps,
it is possible to distinguish ''true spurs'' that originate as instabilities in
the spiral arms from independently growing ''background'' filaments. Our models
also suggest that magnetic fields are important in preserving grand design
spiral structure when gas in the arms fragments via self-gravity into GMCs.Comment: 36 pages, 17 figures, Accepted for publication in ApJ. PDF version
with high resolution figures available at
http://www.astro.umd.edu/~shetty/Research
Line Profiles of Cores within Clusters. III. What is the most reliable tracer of core collapse in dense clusters?
Recent observational and theoretical investigations have emphasised the
importance of filamentary networks within molecular clouds as sites of star
formation. Since such environments are more complex than those of isolated
cores, it is essential to understand how the observed line profiles from
collapsing cores with non-spherical geometry are affected by filaments. In this
study, we investigate line profile asymmetries by performing radiative transfer
calculations on hydrodynamic models of three collapsing cores that are embedded
in filaments. We compare the results to those that are expected for isolated
cores. We model the five lowest rotational transition line (J = 1-0, 2-1, 3-2,
4-3, and 5-4) of both optically thick (HCN, HCO) as well as optically thin
(NH, HCO) molecules using constant abundance laws. We find
that less than 50% of simulated (1-0) transition lines show blue infall
asymmetries due to obscuration by the surrounding filament. However, the
fraction of collapsing cores that have a blue asymmetric emission line profile
rises to 90% when observed in the (4-3) transition. Since the densest gas
towards the collapsing core can excite higher rotational states, upper level
transitions are more likely to produce blue asymmetric emission profiles. We
conclude that even in irregular, embedded cores one can trace infalling gas
motions with blue asymmetric line profiles of optically thick lines by
observing higher transitions. The best tracer of collapse motions of our sample
is the (4-3) transition of HCN, but the (3-2) and (5-4) transitions of both HCN
and HCO are also good tracers.Comment: accepted by MNRAS; 13 pages, 16 figures, 6 table
- …