4 research outputs found

    High-Level Semantic Feature Matters Few-Shot Unsupervised Domain Adaptation

    No full text
    In few-shot unsupervised domain adaptation (FS-UDA), most existing methods followed the few-shot learning (FSL) methods to leverage the low-level local features (learned from conventional convolutional models, e.g., ResNet) for classification. However, the goal of FS-UDA and FSL are relevant yet distinct, since FS-UDA aims to classify the samples in target domain rather than source domain. We found that the local features are insufficient to FS-UDA, which could introduce noise or bias against classification, and not be used to effectively align the domains. To address the above issues, we aim to refine the local features to be more discriminative and relevant to classification. Thus, we propose a novel task-specific semantic feature learning method (TSECS) for FS-UDA. TSECS learns high-level semantic features for image-to-class similarity measurement. Based on the high-level features, we design a cross-domain self-training strategy to leverage the few labeled samples in source domain to build the classifier in target domain. In addition, we minimize the KL divergence of the high-level feature distributions between source and target domains to shorten the distance of the samples between the two domains. Extensive experiments on DomainNet show that the proposed method significantly outperforms SOTA methods in FS-UDA by a large margin (i.e., ∼ 10%)

    Table1_A novel lower extremity non-contact injury risk prediction model based on multimodal fusion and interpretable machine learning.DOCX

    No full text
    The application of machine learning algorithms in studying injury assessment methods based on data analysis has recently provided a new research insight for sports injury prevention. However, the data used in these studies are primarily multi-source and multimodal (i.e., longitudinal repeated-measures data and cross-sectional data), resulting in the models not fully utilising the information in the data to reveal specific injury risk patterns. Therefore, this study proposed an injury risk prediction model based on a multi-modal strategy and machine learning algorithms to handle multi-source data better and predict injury risk. This study retrospectively analysed the routine monitoring data of sixteen young female basketball players. These data included training load, perceived well-being status, physiological response, physical performance and lower extremity non-contact injury registration. This study partitions the original dataset based on the frequency of data collection. Extreme gradient boosting (XGBoost) was used to construct unimodal submodels to obtain decision scores for each category of indicators. Ultimately, the decision scores from each submodel were fused using the random forest (RF) to generate a lower extremity non-contact injury risk prediction model at the decision-level. The 10-fold cross-validation results showed that the fusion model was effective in classifying non-injured (mean Precision: 0.9932, mean Recall: 0.9976, mean F2-score: 0.9967), minimal lower extremity non-contact injuries risk (mean Precision: 0.9317, mean Recall: 0.9167, mean F2-score: 0.9171), and mild lower extremity non-contact injuries risk (mean Precision: 0.9000, mean Recall: 0.9000, mean F2-score: 0.9000). The model performed significantly more optimal than the submodel. Comparing the fusion model proposed with a traditional data integration scheme, the average Precision and Recall improved by 8.2 and 20.3%, respectively. The decision curves analysis showed that the proposed fusion model provided a higher net benefit to athletes with potential lower extremity non-contact injury risk. The validity, feasibility and practicality of the proposed model have been confirmed. In addition, the shapley additive explanation (SHAP) and network visualisation revealed differences in lower extremity non-contact injury risk patterns across severity levels. The model proposed in this study provided a fresh perspective on injury prevention in future research.</p

    Few-shot Unsupervised Domain Adaptation with Image-to-Class Sparse Similarity Encoding

    No full text
    This paper investigates a valuable setting called few-shot unsupervised domain adaptation (FS-UDA), which has not been sufficiently studied in the literature. In this setting, the source domain data are labelled, but with few-shot per category, while the target domain data are unlabelled. To address the FS-UDA setting, we develop a general UDA model to solve the following two key issues: the few-shot labeled data per category and the domain adaptation between support and query sets. Our model is general in that once trained it will be able to be applied to various FS-UDA tasks from the same source and target domains. Inspired by the recent local descriptor based few-shot learning (FSL), our general UDA model is fully built upon local descriptors (LDs) for image classification and domain adaptation. By proposing a novel concept called similarity patterns (SPs), our model not only effectively considers the spatial relationship of LDs that was ignored in previous FSL methods, but also makes the learned image similarity better serve the required domain alignment. Specifically, we propose a novel IMage-to-class sparse Similarity Encoding (IMSE) method. It learns SPs to extract the local discriminative information for classification and meanwhile aligns the covariance matrix of the SPs for domain adaptation. Also, domain adversarial training and multi-scale local feature matching are performed upon LDs. Extensive experiments conducted on a multi-domain benchmark dataset DomainNet demonstrates the state-of-the-art performance of our IMSE for the novel setting of FS-UDA. In addition, for FSL, our IMSE can also show better performance than most of recent FSL methods on miniImageNet

    Few-Shot Unsupervised Domain Adaptation via Meta Learning

    No full text
    Unsupervised domain adaptation (UDA) has raised a lot of interests in recent years. However, current UDA methods are still not capable enough in dealing with two issues: 1) the scarcity of labeled data in source domain and 2) the need of a general model that can quickly adapt to solve new UDA tasks. To address this situation, we investigate available but rarely-studied setting called few-shot unsupervised domain adaptation (FS-UDA), in which the data of source domain is few-shot per category and the data of target domain remains unlabeled. To realize effective adaptation for FS-UDA tasks in the same source and target domains, we propose a novel meta learning method namely meta-FUDA, which leverages meta learning to perform task-level transfer and domain-level transfer jointly. Extensive experiments demonstrate the promising performance of our method on multiple benchmark data sets
    corecore