727 research outputs found
Optimized oxygen therapy improves sleep deprivation-induced cardiac dysfunction through gut microbiota
Adequate sleep is of paramount importance for relieving stress and restoring mental vigor. However, the adverse physiological and pathological responses resulting from sleep insufficiency or sleep deprivation (SD) are becoming increasingly prevalent. Currently, the impact of sleep deficiency on gut microbiota and microbiota-associated human diseases, especially cardiac diseases, remains controversial. Here, we employed the following methods: constructed an experimental sleep-deprivation model in mice; conducted 16S rRNA sequencing to investigate the changes in gut microbiota; through fecal microbiota transplantation (FMT) experiments, transplanted fecal microbiota from sleep-deprived mice to other mice; established an environment with a 30% oxygen concentration to explore the therapeutic effects of oxygen therapy on gut microbiota-associated cardiac fibrosis and dysfunction; and utilized transcriptome data to study the underlying mechanisms of oxygen therapy. The results revealed that: sleep-deprived mice exhibited weakness, depression-like behaviors, and dysfunction in multiple organs. Pathogenic cardiac hypertrophy and fibrosis occurred in sleep-deprived mice, accompanied by poor ejection fraction and fractional shortening. 16S rRNA sequencing indicated that sleep deprivation induced pathogenic effects on gut microbiota, and similar phenomena were also observed in mice that received fecal microbiota from sleep-deprived mice in the FMT experiments. The environment with a 30% oxygen concentration effectively alleviated the pathological impacts on cardiac function. Transcriptome data showed that oxygen therapy targeted several hypoxia-dependent pathways and inhibited the production of cardiac collagen. In conclusion, these results demonstrate the significance of sufficient sleep for gut microbiota and may represent a potential therapeutic strategy, where the oxygen environment exerts a protective effect on insomniacs through gut microbiota
A compendium of genetic regulatory effects across pig tissues
The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.</p
Multidifferential study of identified charged hadron distributions in -tagged jets in proton-proton collisions at 13 TeV
Jet fragmentation functions are measured for the first time in proton-proton
collisions for charged pions, kaons, and protons within jets recoiling against
a boson. The charged-hadron distributions are studied longitudinally and
transversely to the jet direction for jets with transverse momentum 20 GeV and in the pseudorapidity range . The
data sample was collected with the LHCb experiment at a center-of-mass energy
of 13 TeV, corresponding to an integrated luminosity of 1.64 fb. Triple
differential distributions as a function of the hadron longitudinal momentum
fraction, hadron transverse momentum, and jet transverse momentum are also
measured for the first time. This helps constrain transverse-momentum-dependent
fragmentation functions. Differences in the shapes and magnitudes of the
measured distributions for the different hadron species provide insights into
the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb
public pages
Study of the decay
The decay is studied
in proton-proton collisions at a center-of-mass energy of TeV
using data corresponding to an integrated luminosity of 5
collected by the LHCb experiment. In the system, the
state observed at the BaBar and Belle experiments is
resolved into two narrower states, and ,
whose masses and widths are measured to be where the first uncertainties are statistical and the second
systematic. The results are consistent with a previous LHCb measurement using a
prompt sample. Evidence of a new
state is found with a local significance of , whose mass and width
are measured to be and , respectively. In addition, evidence of a new decay mode
is found with a significance of
. The relative branching fraction of with respect to the
decay is measured to be , where the first
uncertainty is statistical, the second systematic and the third originates from
the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb
public pages
- …