16,089 research outputs found

    Diffusion Strategies Outperform Consensus Strategies for Distributed Estimation over Adaptive Networks

    Full text link
    Adaptive networks consist of a collection of nodes with adaptation and learning abilities. The nodes interact with each other on a local level and diffuse information across the network to solve estimation and inference tasks in a distributed manner. In this work, we compare the mean-square performance of two main strategies for distributed estimation over networks: consensus strategies and diffusion strategies. The analysis in the paper confirms that under constant step-sizes, diffusion strategies allow information to diffuse more thoroughly through the network and this property has a favorable effect on the evolution of the network: diffusion networks are shown to converge faster and reach lower mean-square deviation than consensus networks, and their mean-square stability is insensitive to the choice of the combination weights. In contrast, and surprisingly, it is shown that consensus networks can become unstable even if all the individual nodes are stable and able to solve the estimation task on their own. When this occurs, cooperation over the network leads to a catastrophic failure of the estimation task. This phenomenon does not occur for diffusion networks: we show that stability of the individual nodes always ensures stability of the diffusion network irrespective of the combination topology. Simulation results support the theoretical findings.Comment: 37 pages, 7 figures, To appear in IEEE Transactions on Signal Processing, 201

    On the Influence of Informed Agents on Learning and Adaptation over Networks

    Full text link
    Adaptive networks consist of a collection of agents with adaptation and learning abilities. The agents interact with each other on a local level and diffuse information across the network through their collaborations. In this work, we consider two types of agents: informed agents and uninformed agents. The former receive new data regularly and perform consultation and in-network tasks, while the latter do not collect data and only participate in the consultation tasks. We examine the performance of adaptive networks as a function of the proportion of informed agents and their distribution in space. The results reveal some interesting and surprising trade-offs between convergence rate and mean-square performance. In particular, among other results, it is shown that the performance of adaptive networks does not necessarily improve with a larger proportion of informed agents. Instead, it is established that the larger the proportion of informed agents is, the faster the convergence rate of the network becomes albeit at the expense of some deterioration in mean-square performance. The results further establish that uninformed agents play an important role in determining the steady-state performance of the network, and that it is preferable to keep some of the highly connected agents uninformed. The arguments reveal an important interplay among three factors: the number and distribution of informed agents in the network, the convergence rate of the learning process, and the estimation accuracy in steady-state. Expressions that quantify these relations are derived, and simulations are included to support the theoretical findings. We further apply the results to two models that are widely used to represent behavior over complex networks, namely, the Erdos-Renyi and scale-free models.Comment: 35 pages, 8 figure

    Reprocessed emission from warped accretion discs induced by the Bardeen-Petterson effect

    Full text link
    The broad Balmer emission-line profiles resulting from the reprocessing of UV/X-ray radiation from a warped accretion disc induced by the Bardeen-Petterson effect are studied. We adopt a thin warped disc geometry and a central ring-like illuminating source in our model. We compute the steady-state shape of the warped disc numerically, and then use it in the calculation of the line profile. We find that, from the outer radius to the inner radius of the disc, the warp is twisted by an angle of π\sim\pi before being flattened efficiently into the equatorial plane. The profiles obtained depend weakly on the illuminating source radius in the range from 3rg3r_{g} to 10rg10r_g, but depend strongly on this radius when it approaches the marginally stable orbit of an extreme Kerr black hole. Double- or triplet-peaked line profiles are present in most cases when the illuminating source radius is low. The triplet-peaked line profiles observed from the Sloan Digital Sky Survey may be a {"}signature" of a warped disc.Comment: 8 pages, 6 figures, typos corrected, matches version to appear in MNRA

    Competing electronic orders on Kagome lattices at van Hove filling

    Full text link
    The electronic orders in Hubbard models on a Kagome lattice at van Hove filling are of intense current interest and debate. We study this issue using the singular-mode functional renormalization group theory. We discover a rich variety of electronic instabilities under short range interactions. With increasing on-site repulsion UU, the system develops successively ferromagnetism, intra unit-cell antiferromagnetism, and charge bond order. With nearest-neighbor Coulomb interaction VV alone (U=0), the system develops intra-unit-cell charge density wave order for small VV, s-wave superconductivity for moderate VV, and the charge density wave order appears again for even larger VV. With both UU and VV, we also find spin bond order and chiral dx2y2+idxyd_{x^2 - y^2} + i d_{xy} superconductivity in some particular regimes of the phase diagram. We find that the s-wave superconductivity is a result of charge density wave fluctuations and the squared logarithmic divergence in the pairing susceptibility. On the other hand, the d-wave superconductivity follows from bond order fluctuations that avoid the matrix element effect. The phase diagram is vastly different from that in honeycomb lattices because of the geometrical frustration in the Kagome lattice.Comment: 8 pages with 9 color figure
    corecore