38 research outputs found

    Application of Dissolvable Layered Double Hydroxides As Sorbent in Dispersive Solid-Phase Extraction and Extraction by Co-Precipitation for the Determination of Aromatic Acid Anions

    No full text
    Three types of magnesium–aluminum layered double hydroxides were synthesized and employed as solid-phase extraction (SPE) sorbents to extract several aromatic acids (protocatechuic acid, mandelic acid, phthalic acid, benzoic acid, and salicylic acid) from aqueous samples. An interesting feature of these sorbents is that they dissolve when the pH of the solution is lower than 4. Thus, the analyte elution step, as needed in conventional sorbent-based extraction, was obviated by dissolving the sorbent in acid after extraction and separation from the sample solution. The extract was then directly injected into a high-performance liquid chromatography-ultraviolet detection system for analysis. In the key adsorption process, both dispersive SPE and co-precipitation extraction with the sorbents were conducted and experimental parameters such as pH, temperature, and extraction time were optimized. The results showed that both extraction methods provided low limits of detection (0.03–1.47 μg/L) and good linearity (<i>r</i><sup>2</sup> > 0.9903). The optimized extraction conditions were applied to human urine and sports drink samples. This new and interesting extraction approach was demonstrated to be a fast and efficient procedure for the extraction of organic anions from aqueous samples

    Automated Dispersive Solid-Phase Extraction Using Dissolvable Fe<sub>3</sub>O<sub>4</sub>‑Layered Double Hydroxide Core–Shell Microspheres as Sorbent

    No full text
    Automation of dispersive solid-phase extraction (d-SPE) presents significant challenges. Separation of the sorbent from the spent sample cannot be conducted without manual operations, including centrifugation, a widely used means of isolating a solid material from solution. In this work, we report an approach to d-SPE using dissolvable magnetic Fe<sub>3</sub>O<sub>4</sub>-layered double hydroxide core–shell microspheres as sorbent to enable automation of the integrative extraction and analytical processes. Through magnetic force, the sorbent, after extraction, was isolated from the sample and then dissolved by acid to release the analytes. Thus the customary analyte elution step in conventional SPE was unnecessary. The automated d-SPE step was coupled to high-performance liquid chromatography (HPLC) with photodiode array detection for determination of several pharmaceuticals and personal care products (PPCPs) [acetylsalicylic acid (ASA), 2,5-dihydroxybenzoic acid (DBA), 2-phenylphenol (PP), and fenoprofen (FP)] in aqueous samples. For the automated d-SPE process, experimental parameters such as agitation speed, temperature, time, and pH were optimized. The results showed that this method provided low limits of detection (between 0.021 and 0.042 μg/L), good linearity (<i>r</i><sup>2</sup> ≥ 0.9956), and good repeatability of extractions (relative standard deviations ≤4.1%, <i>n</i> = 6). The optimized procedure was then applied to determination of PPCPs in a sewage sample and ASA and FP in drug preparations. This fully automated extraction–HPLC approach was demonstrated to be an efficient procedure for extraction and analysis of ASA, DBA, PP, and FP in these samples

    Logarithmic Data Processing Can Be Used Justifiably in the Plotting of a Calibration Curve

    No full text
    The article is a response to a recent opinion piece that log concentration values should not be applied in analytical chemistry. An essential aim in the development of analytical chemistry methods is to obtain more sensitive and accurate detection values. For the application of chemical analysis methods, the obtained experiment data need to fit with the mathematical functions in the first place. As influenced by different detection principles and analytical methods, data can be displayed in a coordinate system with two linear axes for linear function fitting, or the data can first be taken through a logarithmic transformation and then for function fitting. Using raw data or data after logarithmic transformation primarily depends on analytical principles, without special rules of data formats. For example, ultraviolet–visible spectrophotometric data are more suitable for direct linear fitting. However, enzyme-catalyzed reaction or electrochemical data in logarithmic form are more appropriate for function fitting. This transformation of data form will not affect the soundness of fit statistics; rather, it simplifies the complexity of function analysis and calculation, which are the essence of analytical chemistry. In this brief article, we provide justification and legitimacy of the application of logarithmic processing in various fields of quantitative analytical chemistry

    Can Direct-Immersion Aqueous–Aqueous Microextraction Be Achieved When Using a Single-Drop System?

    No full text
    For the analysis of biological analytes in complex matrices, it is difficult to achieve extraction of analytes and enrichment in an aqueous–aqueous single-drop microextraction system. In this study, we proposed a pH-dependent polydopamine (PDA)-coated vesicle/Fe3O4 magnetic aqueous–aqueous in a single-drop microreactor (SDMR) for the direct fluorescence detection of glutathione S-transferase (GST), a metabolic enzyme involved with crucial biological processes, in biological samples. After extracting and enriching the GST target from an aqueous–aqueous single-drop interface, the extraction process was conducted rapidly in 6 s in the SDMR system. The GST was first extracted from the sample solution via the GST-Aptamer on the polydopamine-coated vesicle/Fe3O4 nanospheres (Fe3O4@PDA@GST-Aptamer). Then, as the pH changed from weakly acidic to weakly alkaline in the SDMR system, the GST and GST-Aptamer were released from Fe3O4@PDA@GST-Aptamer nanospheres and captured by polydiacetylene vesicles via the capture probe. These changes altered the effective conjugation length and angle of the vesicle trunk, generating a highly enhanced fluorescence signal. This not only achieved the purpose of target enrichment but also reduced interferences posed by matrix effects. The approach can be used for the direct detection of GST in genuine urine and blood without any sample pretreatment. The linear range was 0.005 to 0.5 μg/mL, and the limit of detection was 0.834 ng/mL. The recoveries of GST in genuine blood samples ranged from 90.8 to 108.0% and in urine from 91.6 to 102.8%. The method has the capability of handling complex samples directly by enabling microextraction in an aqueous–aqueous single-drop system

    <i>N</i>‑Allylation of Azoles with Hydrogen Evolution Enabled by Visible-Light Photocatalysis

    No full text
    Direct N-allylation of azoles with hydrogen evolution has been achieved through the synergistic combination of organic photocatalysis and cobalt catalysis. The protocol bypasses stoichiometric oxidants and prefunctionalization of alkenes and produces hydrogen (H2) as the byproduct. This transformation highlights high step- and atom-economy, high efficiency, and broad functional group tolerance for further derivatization, which opens a door for C–N bond formation that is valuable in heterocyclic chemistry

    Direct C(sp<sup>3</sup>)–H Arylation of Unprotected Benzyl Anilines and Alkylarenes by Organocatalysis under Visible Light

    No full text
    Reported herein is direct C(sp3)–H arylation of unprotected benzyl anilines and alkylarenes via consecutive photoinduced electron transfer by visible light irradiation. Reductive quenching cycles and radical–radical cross-coupling were involved, and electron paramagnetic resonance experiments provide evidence for the formation of radical intermediates formed in situ. The protocol highlights transition metal free, external oxidant free, broad substrate scope, and high efficiency (>60 examples, up to 96%)

    Spatial Confinement of Single-Drop System to Enhance Aggregation-Induced Emission for Detection of MicroRNAs

    No full text
    Due to high incidence, poor prognosis, and easy transformation into pancreatic cancer (PC) with high mortality, early diagnosis and prevention of acute pancreatitis (AP) have become significant research focuses. In this work, we proposed a magnetic single-drop microextraction (SDME) system with spatial confinement to enhance the aggregation-induced emission (AIE) effect for simultaneous fluorescence detection of miRNA-155 (associated with AP) and miRNA-196a (associated with PC). The target miRNAs were selectively recognized by the hairpin probe and triggered the DNA amplification reaction; then, the DNA strands with two independent probes of G-quadruplex/TAIN and Cy5 were constructed on the surfaces of the magnetic beads. The SDME process, in which a drop containing the fluorescence probes was formed at the tip of the magnetic microextraction rod rapidly within 10 s, was performed by magnetic extraction. In this way, G-quadruplex/TAIN was enriched owing to the spatial confinement of the single-drop system, and the fluorescence signal given off (by G-quadruplex/TAIN) was highly enhanced (AIE effect). This was detected directly by fluorescence spectrophotometry. The approach achieved low limits of detection of 2.1 aM for miRNA-196a and 8.1 aM for miRNA-155 and wide linear ranges from 10 aM to 10 nM for miRNA-196a and from 25 aM to 10 nM for miRNA-155. This novel method was applied to the fluorescence detection of miRNAs in human serum samples. High relative recoveries from 95.6% to 104.8% were obtained

    Chiral Calcium Phosphate Catalyzed Asymmetric Alkenylation Reaction of Arylglyoxals with 3‑Vinylindoles

    No full text
    A highly efficient alkenylation reaction of arylglyoxals with 3-vinylindoles catalyzed by chiral calcium phosphate is described. Structurally diverse allylic alcohols bearing indole and carbonyl units are prepared in excellent yields, good diastereoselectivities, and high to excellent enantioselectivities. These products are good building blocks for the synthesis of polysubstituted chiral tetrahydrocarbozol-2-ones. The mechanism study indicates that the most likely role of the catalyst is to activate the hydrate of arylglyoxal and control the stereoselectivity via desymmetric coordination

    Synthesis and Biological Evaluation of Sophoridinol Derivatives as a Novel Family of Potential Anticancer Agents

    No full text
    New N-substituted sophoridinic acid/ester and sophoridinol derivatives were synthesized and evaluated for their cytotoxic activity in human HepG2 hepatoma cells from the lead sophoridine (1). Among the newly synthesized compounds, sophoridinol 7i displayed a potential antiproliferative activity with an IC50 of 3.1 μM. Importantly, it exerted an almost equipotent effect against both wild MCF-7 and adriamycin (AMD)-resistant MCF-7 (MCF-7/AMD) breast carcinoma cell lines. Its mode of action was to arrest the cell cycle at the G0/G1 phase, consistent with that of the parent 1. In addition, compound 7i also showed a reasonable ClogP value and favorable pharmacokinetic property with an area under the concentration–time curve (AUC) of 10.3 μM·h in rats, indicating an ideal druggable characteristic. We consider sophoridinol derivatives to be a novel family of promising antitumor agents with an advantage of inhibiting drug-resistant cancer cells
    corecore