40 research outputs found

    Stochastic Answer Networks for Machine Reading Comprehension

    Full text link
    We propose a simple yet robust stochastic answer network (SAN) that simulates multi-step reasoning in machine reading comprehension. Compared to previous work such as ReasoNet which used reinforcement learning to determine the number of steps, the unique feature is the use of a kind of stochastic prediction dropout on the answer module (final layer) of the neural network during the training. We show that this simple trick improves robustness and achieves results competitive to the state-of-the-art on the Stanford Question Answering Dataset (SQuAD), the Adversarial SQuAD, and the Microsoft MAchine Reading COmprehension Dataset (MS MARCO).Comment: 11 pages, 5 figures, Accepted to ACL 201

    Language-Based Image Editing with Recurrent Attentive Models

    Full text link
    We investigate the problem of Language-Based Image Editing (LBIE). Given a source image and a natural language description, we want to generate a target image by editing the source image based on the description. We propose a generic modeling framework for two sub-tasks of LBIE: language-based image segmentation and image colorization. The framework uses recurrent attentive models to fuse image and language features. Instead of using a fixed step size, we introduce for each region of the image a termination gate to dynamically determine after each inference step whether to continue extrapolating additional information from the textual description. The effectiveness of the framework is validated on three datasets. First, we introduce a synthetic dataset, called CoSaL, to evaluate the end-to-end performance of our LBIE system. Second, we show that the framework leads to state-of-the-art performance on image segmentation on the ReferIt dataset. Third, we present the first language-based colorization result on the Oxford-102 Flowers dataset.Comment: Accepted to CVPR 2018 as a Spotligh

    A Deep Embedding Model for Co-occurrence Learning

    Full text link
    Co-occurrence Data is a common and important information source in many areas, such as the word co-occurrence in the sentences, friends co-occurrence in social networks and products co-occurrence in commercial transaction data, etc, which contains rich correlation and clustering information about the items. In this paper, we study co-occurrence data using a general energy-based probabilistic model, and we analyze three different categories of energy-based model, namely, the L1L_1, L2L_2 and LkL_k models, which are able to capture different levels of dependency in the co-occurrence data. We also discuss how several typical existing models are related to these three types of energy models, including the Fully Visible Boltzmann Machine (FVBM) (L2L_2), Matrix Factorization (L2L_2), Log-BiLinear (LBL) models (L2L_2), and the Restricted Boltzmann Machine (RBM) model (LkL_k). Then, we propose a Deep Embedding Model (DEM) (an LkL_k model) from the energy model in a \emph{principled} manner. Furthermore, motivated by the observation that the partition function in the energy model is intractable and the fact that the major objective of modeling the co-occurrence data is to predict using the conditional probability, we apply the \emph{maximum pseudo-likelihood} method to learn DEM. In consequence, the developed model and its learning method naturally avoid the above difficulties and can be easily used to compute the conditional probability in prediction. Interestingly, our method is equivalent to learning a special structured deep neural network using back-propagation and a special sampling strategy, which makes it scalable on large-scale datasets. Finally, in the experiments, we show that the DEM can achieve comparable or better results than state-of-the-art methods on datasets across several application domains

    Efficient RLHF: Reducing the Memory Usage of PPO

    Full text link
    Reinforcement Learning with Human Feedback (RLHF) has revolutionized language modeling by aligning models with human preferences. However, the RL stage, Proximal Policy Optimization (PPO), requires over 3x the memory of Supervised Fine-Tuning (SFT), making it infeasible to use for most practitioners. To address this issue, we present a comprehensive analysis the memory usage, performance, and training time of memory-savings techniques for PPO. We introduce Hydra-RLHF by first integrating the SFT and Reward models and then dynamically turning LoRA "off" during training. Our experiments show: 1. Using LoRA during PPO reduces its memory usage to be smaller than SFT while improving alignment across four public benchmarks, and 2. Hydra-PPO reduces the latency per sample of LoRA-PPO by up to 65% while maintaining its performance. Our results demonstrate that Hydra-PPO is a simple and promising solution for enabling more widespread usage of RLHF
    corecore