40 research outputs found
Stochastic Answer Networks for Machine Reading Comprehension
We propose a simple yet robust stochastic answer network (SAN) that simulates
multi-step reasoning in machine reading comprehension. Compared to previous
work such as ReasoNet which used reinforcement learning to determine the number
of steps, the unique feature is the use of a kind of stochastic prediction
dropout on the answer module (final layer) of the neural network during the
training. We show that this simple trick improves robustness and achieves
results competitive to the state-of-the-art on the Stanford Question Answering
Dataset (SQuAD), the Adversarial SQuAD, and the Microsoft MAchine Reading
COmprehension Dataset (MS MARCO).Comment: 11 pages, 5 figures, Accepted to ACL 201
Language-Based Image Editing with Recurrent Attentive Models
We investigate the problem of Language-Based Image Editing (LBIE). Given a
source image and a natural language description, we want to generate a target
image by editing the source image based on the description. We propose a
generic modeling framework for two sub-tasks of LBIE: language-based image
segmentation and image colorization. The framework uses recurrent attentive
models to fuse image and language features. Instead of using a fixed step size,
we introduce for each region of the image a termination gate to dynamically
determine after each inference step whether to continue extrapolating
additional information from the textual description. The effectiveness of the
framework is validated on three datasets. First, we introduce a synthetic
dataset, called CoSaL, to evaluate the end-to-end performance of our LBIE
system. Second, we show that the framework leads to state-of-the-art
performance on image segmentation on the ReferIt dataset. Third, we present the
first language-based colorization result on the Oxford-102 Flowers dataset.Comment: Accepted to CVPR 2018 as a Spotligh
A Deep Embedding Model for Co-occurrence Learning
Co-occurrence Data is a common and important information source in many
areas, such as the word co-occurrence in the sentences, friends co-occurrence
in social networks and products co-occurrence in commercial transaction data,
etc, which contains rich correlation and clustering information about the
items. In this paper, we study co-occurrence data using a general energy-based
probabilistic model, and we analyze three different categories of energy-based
model, namely, the , and models, which are able to capture
different levels of dependency in the co-occurrence data. We also discuss how
several typical existing models are related to these three types of energy
models, including the Fully Visible Boltzmann Machine (FVBM) (), Matrix
Factorization (), Log-BiLinear (LBL) models (), and the Restricted
Boltzmann Machine (RBM) model (). Then, we propose a Deep Embedding Model
(DEM) (an model) from the energy model in a \emph{principled} manner.
Furthermore, motivated by the observation that the partition function in the
energy model is intractable and the fact that the major objective of modeling
the co-occurrence data is to predict using the conditional probability, we
apply the \emph{maximum pseudo-likelihood} method to learn DEM. In consequence,
the developed model and its learning method naturally avoid the above
difficulties and can be easily used to compute the conditional probability in
prediction. Interestingly, our method is equivalent to learning a special
structured deep neural network using back-propagation and a special sampling
strategy, which makes it scalable on large-scale datasets. Finally, in the
experiments, we show that the DEM can achieve comparable or better results than
state-of-the-art methods on datasets across several application domains
Efficient RLHF: Reducing the Memory Usage of PPO
Reinforcement Learning with Human Feedback (RLHF) has revolutionized language
modeling by aligning models with human preferences. However, the RL stage,
Proximal Policy Optimization (PPO), requires over 3x the memory of Supervised
Fine-Tuning (SFT), making it infeasible to use for most practitioners. To
address this issue, we present a comprehensive analysis the memory usage,
performance, and training time of memory-savings techniques for PPO. We
introduce Hydra-RLHF by first integrating the SFT and Reward models and then
dynamically turning LoRA "off" during training. Our experiments show: 1. Using
LoRA during PPO reduces its memory usage to be smaller than SFT while improving
alignment across four public benchmarks, and 2. Hydra-PPO reduces the latency
per sample of LoRA-PPO by up to 65% while maintaining its performance. Our
results demonstrate that Hydra-PPO is a simple and promising solution for
enabling more widespread usage of RLHF