3 research outputs found

    Aerial Robots Carrying Flexible Cables: Dynamic Shape Optimal Control via Spectral Method Model

    Full text link
    In this work, we present a model-based optimal boundary control design for an aerial robotic system composed of a quadrotor carrying a flexible cable. The whole system is modeled by partial differential equations (PDEs) combined with boundary conditions described by ordinary differential equations (ODEs). The proper orthogonal decomposition (POD) method is adopted to project the original infinite-dimensional system on a subspace spanned by orthogonal basis functions. Based on the reduced order model, nonlinear model predictive control (NMPC) is implemented online to realize shape trajectory tracking of the flexible cable in an optimal predictive fashion. The proposed reduced modeling and optimal control paradigms are numerically verified against an accurate high-dimensional FDM-based model in different scenarios and the controller's superior performance is shown compared to an optimally tuned PID controller

    Aerial Robots Carrying Flexible Cables:Dynamic Shape Optimal Control via Spectral Method Model

    Get PDF
    In this work, we present a model-based optimal boundary control design for an aerial robotic system composed of a quadrotor carrying a flexible cable. The whole system is modeled by partial differential equations (PDEs) combined with boundary conditions described by ordinary differential equations (ODEs). The proper orthogonal decomposition (POD) method is adopted to project the original infinite-dimensional system on a subspace spanned by orthogonal basis functions. Based on the reduced order model, nonlinear model predictive control (NMPC) is implemented online to realize shape trajectory tracking of the flexible cable in an optimal predictive fashion. The proposed reduced modeling and optimal control paradigms are numerically verified against an accurate high-dimensional FDM-based model in different scenarios and the controller's superior performance is shown compared to an optimally tuned PID controller

    Investigation of Hypoxia-Induced Myocardial Injury Dynamics in a Tissue Interface Mimicking Microfluidic Device

    No full text
    Myocardial infarction is a major cause of morbidity and mortality worldwide. However, the methodological development of a spatiotemporally controllable investigation of the damage events in myocardial infarction remains challengeable. In the present study, we describe a micropillar array-aided tissue interface mimicking microfluidic device for the dynamic study of hypoxia-induced myocardial injury in a microenvironment-controllable manner. The mass distribution in the device was visually characterized, calculated, and systematically evaluated using the micropillar-assisted biomimetic interface, physiologically relevant flows, and multitype transportation. The fluidic microenvironment in the specifically functional chamber for cell positioning and analysis was successfully constructed with high fluidic relevance to the myocardial tissue. We also performed a microenvironment-controlled microfluidic cultivation of myocardial cells with high viability and regular structure integration. Using the well-established culture device with a tissue-mimicking microenvironment, a further on-chip investigation of hypoxia-induced myocardial injury was carried out and the varying apoptotic responses of myocardial cells were temporally monitored and measured. The results show that the hypoxia directionally resulted in observable cell shrinkage, disintegration of the cytoskeleton, loss of mitochondrial membrane potential, and obvious activation of caspase-3, which indicates its significant apoptosis effect on myocardial cells. We believe this microfluidic device can be suitable for temporal investigations of cell activities and responses in myocardial infarction. It is also potentially valuable to the microcontrol development of tissue-simulated studies of multiple clinical organ/tissue disease dynamics
    corecore