5 research outputs found
Exploiting Rich Syntactic Information for Semantic Parsing with Graph-to-Sequence Model
Existing neural semantic parsers mainly utilize a sequence encoder, i.e., a
sequential LSTM, to extract word order features while neglecting other valuable
syntactic information such as dependency graph or constituent trees. In this
paper, we first propose to use the \textit{syntactic graph} to represent three
types of syntactic information, i.e., word order, dependency and constituency
features. We further employ a graph-to-sequence model to encode the syntactic
graph and decode a logical form. Experimental results on benchmark datasets
show that our model is comparable to the state-of-the-art on Jobs640, ATIS and
Geo880. Experimental results on adversarial examples demonstrate the robustness
of the model is also improved by encoding more syntactic information.Comment: EMNLP'1
Method and System for Temporal Filtering in Video Compression Systems
Three related innovations combine improved non-linear motion estimation, video coding, and video compression. The first system comprises a method in which side information is generated using an adaptive, non-linear motion model. This method enables extrapolating and interpolating a visual signal, including determining the first motion vector between the first pixel position in a first image to a second pixel position in a second image; determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image; determining a third motion vector between the first pixel position in the first image and the second pixel position in the second image, the second pixel position in the second image, and the third pixel position in the third image using a non-linear model; and determining a position of the fourth pixel in a fourth image based upon the third motion vector. For the video compression element, the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a decoder. The encoder converts the source frame into a space-frequency representation, estimates the conditional statistics of at least one vector of space-frequency coefficients with similar frequencies, and is conditioned on previously encoded data. It estimates an encoding rate based on the conditional statistics and applies a Slepian-Wolf code with the computed encoding rate. The method for decoding includes generating a side-information vector of frequency coefficients based on previously decoded source data and encoder statistics and previous reconstructions of the source frequency vector. It also performs Slepian-Wolf decoding of a source frequency vector based on the generated side-information and the Slepian-Wolf code bits. The video coding element includes receiving a first reference frame having a first pixel value at a first pixel position, a second reference frame having a second pixel value at a second pixel position, and a third reference frame having a third pixel value at a third pixel position. It determines a first motion vector between the first pixel position and the second pixel position, a second motion vector between the second pixel position and the third pixel position, and a fourth pixel value for a fourth frame based upon a linear or nonlinear combination of the first pixel value, the second pixel value, and the third pixel value. A stationary filtering process determines the estimated pixel values. The parameters of the filter may be predetermined constants
Identifying Motion Entities in Natural Language and A Case Study for Named Entity Recognition
Motion recognition is one of the basic cognitive capabilities of many life forms, however, detecting and understanding motion in text is not a trivial task. In addition, identifying motion entities in natural language is not only challenging but also beneficial for a better natural language understanding. In this paper, we present a Motion Entity Tagging (MET) model to identify entities in motion in a text using the Literal-Motion-in-Text (LiMiT) dataset for training and evaluating the model. Then we propose a new method to split clauses and phrases from complex and long motion sentences to improve the performance of our MET model. We also present results showing that motion features, in particular, entity in motion benefits the Named-Entity Recognition (NER) task. Finally, we present an analysis for the special co-occurrence relation between the person category in NER and animate entities in motion, which significantly improves the classification performance for the person category in NER