117 research outputs found
Linear-Size Approximations to the Vietoris-Rips Filtration
The Vietoris-Rips filtration is a versatile tool in topological data
analysis. It is a sequence of simplicial complexes built on a metric space to
add topological structure to an otherwise disconnected set of points. It is
widely used because it encodes useful information about the topology of the
underlying metric space. This information is often extracted from its so-called
persistence diagram. Unfortunately, this filtration is often too large to
construct in full. We show how to construct an O(n)-size filtered simplicial
complex on an -point metric space such that its persistence diagram is a
good approximation to that of the Vietoris-Rips filtration. This new filtration
can be constructed in time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space
and the desired tightness of the approximation. For the first time, this makes
it computationally tractable to approximate the persistence diagram of the
Vietoris-Rips filtration across all scales for large data sets.
We describe two different sparse filtrations. The first is a zigzag
filtration that removes points as the scale increases. The second is a
(non-zigzag) filtration that yields the same persistence diagram. Both methods
are based on a hierarchical net-tree and yield the same guarantees
Exact Computation of a Manifold Metric, via Lipschitz Embeddings and Shortest Paths on a Graph
Data-sensitive metrics adapt distances locally based the density of data
points with the goal of aligning distances and some notion of similarity. In
this paper, we give the first exact algorithm for computing a data-sensitive
metric called the nearest neighbor metric. In fact, we prove the surprising
result that a previously published -approximation is an exact algorithm.
The nearest neighbor metric can be viewed as a special case of a
density-based distance used in machine learning, or it can be seen as an
example of a manifold metric. Previous computational research on such metrics
despaired of computing exact distances on account of the apparent difficulty of
minimizing over all continuous paths between a pair of points. We leverage the
exact computation of the nearest neighbor metric to compute sparse spanners and
persistent homology. We also explore the behavior of the metric built from
point sets drawn from an underlying distribution and consider the more general
case of inputs that are finite collections of path-connected compact sets.
The main results connect several classical theories such as the conformal
change of Riemannian metrics, the theory of positive definite functions of
Schoenberg, and screw function theory of Schoenberg and Von Neumann. We develop
novel proof techniques based on the combination of screw functions and
Lipschitz extensions that may be of independent interest.Comment: 15 page
A Fast Algorithm for Well-Spaced Points and Approximate Delaunay Graphs
We present a new algorithm that produces a well-spaced superset of points
conforming to a given input set in any dimension with guaranteed optimal output
size. We also provide an approximate Delaunay graph on the output points. Our
algorithm runs in expected time , where is the
input size, is the output point set size, and is the ambient dimension.
The constants only depend on the desired element quality bounds.
To gain this new efficiency, the algorithm approximately maintains the
Voronoi diagram of the current set of points by storing a superset of the
Delaunay neighbors of each point. By retaining quality of the Voronoi diagram
and avoiding the storage of the full Voronoi diagram, a simple exponential
dependence on is obtained in the running time. Thus, if one only wants the
approximate neighbors structure of a refined Delaunay mesh conforming to a set
of input points, the algorithm will return a size graph in
expected time. If is superlinear in , then we
can produce a hierarchically well-spaced superset of size in
expected time.Comment: Full versio
A Geometric Perspective on Sparse Filtrations
We present a geometric perspective on sparse filtrations used in topological
data analysis. This new perspective leads to much simpler proofs, while also
being more general, applying equally to Rips filtrations and Cech filtrations
for any convex metric. We also give an algorithm for finding the simplices in
such a filtration and prove that the vertex removal can be implemented as a
sequence of elementary edge collapses
A Sparse Delaunay Filtration
We show how a filtration of Delaunay complexes can be used to approximate the persistence diagram of the distance to a point set in ?^d. Whereas the full Delaunay complex can be used to compute this persistence diagram exactly, it may have size O(n^?d/2?). In contrast, our construction uses only O(n) simplices. The central idea is to connect Delaunay complexes on progressively denser subsamples by considering the flips in an incremental construction as simplices in d+1 dimensions. This approach leads to a very simple and straightforward proof of correctness in geometric terms, because the final filtration is dual to a (d+1)-dimensional Voronoi construction similar to the standard Delaunay filtration. We also, show how this complex can be efficiently constructed
Sketching Persistence Diagrams
Given a persistence diagram with n points, we give an algorithm that produces a sequence of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of which has i distinct (weighted) points and is a 2-approximation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the ith and the (i+1)st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in O(n) space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams - a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linear-size neighborhood graph directly, obviating the need for geometric data structures used in state-of-the-art methods for bottleneck computation
Interactive Geometric Algorithm Visualization in a Browser
We present an online, interactive tool for writing and presenting interactive geometry demos suitable for classroom demonstrations. Code for the demonstrations is written in JavaScript using p5.js, a JavaScript library based on Processing
- …