51 research outputs found
Definition, conservation and epigenetics of housekeeping and tissue-enriched genes
<p>Abstract</p> <p>Background</p> <p>Housekeeping genes (HKG) are constitutively expressed in all tissues while tissue-enriched genes (TEG) are expressed at a much higher level in a single tissue type than in others. HKGs serve as valuable experimental controls in gene and protein expression experiments, while TEGs tend to represent distinct physiological processes and are frequently candidates for biomarkers or drug targets. The genomic features of these two groups of genes expressed in opposing patterns may shed light on the mechanisms by which cells maintain basic and tissue-specific functions.</p> <p>Results</p> <p>Here, we generate gene expression profiles of 42 normal human tissues on custom high-density microarrays to systematically identify 1,522 HKGs and 975 TEGs and compile a small subset of 20 housekeeping genes which are highly expressed in all tissues with lower variance than many commonly used HKGs. Cross-species comparison shows that both the functions and expression patterns of HKGs are conserved. TEGs are enriched with respect to both segmental duplication and copy number variation, while no such enrichment is observed for HKGs, suggesting the high expression of HKGs are not due to high copy numbers. Analysis of genomic and epigenetic features of HKGs and TEGs reveals that the high expression of HKGs across different tissues is associated with decreased nucleosome occupancy at the transcription start site as indicated by enhanced DNase hypersensitivity. Additionally, we systematically and quantitatively demonstrated that the CpG islands' enrichment in HKGs transcription start sites (TSS) and their depletion in TEGs TSS. Histone methylation patterns differ significantly between HKGs and TEGs, suggesting that methylation contributes to the differential expression patterns as well.</p> <p>Conclusion</p> <p>We have compiled a set of high quality HKGs that should provide higher and more consistent expression when used as references in laboratory experiments than currently used HKGs. The comparison of genomic features between HKGs and TEGs shows that HKGs are more conserved than TEGs in terms of functions, expression pattern and polymorphisms. In addition, our results identify chromatin structure and epigenetic features of HKGs and TEGs that are likely to play an important role in regulating their strikingly different expression patterns.</p
The genomic distribution of intraspecific and interspecific sequence divergence of human segmental duplications relative to human/chimpanzee chromosomal rearrangements
Background: It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of singlecopy
DNA and have tried to exclude segmental duplications (SDs). This is paradoxical, since SDs are one of the primary forces driving the evolution of structure and function in our genomes and have been linked not only with novel genes acquiring new functions, but also with overall higher
DNA sequence divergence and major chromosomal rearrangements.
Results: Here we take the opposite view and focus on SDs. We analyze several of the features of SDs, including the rates of intraspecific divergence between paralogous copies of human SDs and
of interspecific divergence between human SDs and chimpanzee DNA. We study how divergence measures relate to chromosomal rearrangements, while considering other factors that affect
evolutionary rates in single copy DNA.
Conclusion: We find that interspecific SD divergence behaves similarly to divergence of singlecopy DNA. In contrast, old and recent paralogous copies of SDs do present different patterns of
intraspecific divergence. Also, we show that some relatively recent SDs accumulate in regions that carry inversions in sister lineages.This research was supported by a grant to A.N. from the Ministerio de Ciencia y Tecnologia (Spain, BFU2006 15413-C02-01) and by BE2005 and BP2006 fellowships to T.M.B from the "Departament d'Educacio i Universitats de la Generalitat de Catalunya"
Multimodal Table Understanding
Although great progress has been made by previous table understanding methods
including recent approaches based on large language models (LLMs), they rely
heavily on the premise that given tables must be converted into a certain text
sequence (such as Markdown or HTML) to serve as model input. However, it is
difficult to access such high-quality textual table representations in some
real-world scenarios, and table images are much more accessible. Therefore, how
to directly understand tables using intuitive visual information is a crucial
and urgent challenge for developing more practical applications. In this paper,
we propose a new problem, multimodal table understanding, where the model needs
to generate correct responses to various table-related requests based on the
given table image. To facilitate both the model training and evaluation, we
construct a large-scale dataset named MMTab, which covers a wide spectrum of
table images, instructions and tasks. On this basis, we develop Table-LLaVA, a
generalist tabular multimodal large language model (MLLM), which significantly
outperforms recent open-source MLLM baselines on 23 benchmarks under held-in
and held-out settings. The code and data is available at this
https://github.com/SpursGoZmy/Table-LLaVAComment: 23 pages, 16 figures, ACL 2024 main conference, camera-ready versio
Radiative Corrections to the Casimir Energy
The lowest radiative correction to the Casimir energy density between two
parallel plates is calculated using effective field theory. Since the
correlators of the electromagnetic field diverge near the plates, the
regularized energy density is also divergent. However, the regularized integral
of the energy density is finite and varies with the plate separation L as
1/L^7. This apparently paradoxical situation is analyzed in an equivalent, but
more transparent theory of a massless scalar field in 1+1 dimensions confined
to a line element of length L and satisfying Dirichlet boundary conditions.Comment: 7 pages, Late
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Recommended from our members
The complete sequence of human chromosome 5
Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA)
Effect of Er on Microstructure and Mechanical Properties of 5052 Aluminum Alloy with Big Width-To-Thickness Ratio
The effect of Er on microstructure and mechanical properties of the 5052 aluminum alloy with a big width-to-thickness ratio was investigated by a metallurgical microscope, scanning electron microscope and tensile testing machine. The results showed that the precipitates were slightly refined after Er addition and Al3Fe was transformed into Al6Fe and AlEr with/without a small amount of Fe or Si. The effect of Er on grain refinement was related to its content. When Er content was lower or higher than 0.4%, the grain would coarsen. Homogenization could refine the grain by controlling Er content and distribution in the Al matrix. Long time homogenization at high temperature would significantly reduce the strength of the 5052 aluminum alloy and 5052 aluminum alloys with low Er content, but help to improve the plasticity of those with high Er content. The ultimate tensile strength, yield strength and elongation of the as-cast 5052 aluminum alloy were 197 MPa, 117 MPa and 22.5% respectively. The strength was the highest, when Er content was 0.4 wt. % and the elongation was the best at 0.1 wt. % Er content.</jats:p
Effects of Nd and Homogenizing on Cast Microstructure and Mechanical Properties of ZM21 Alloy
Penochalasin K, a new unusual chaetoglobosin from the mangrove endophytic fungus Penicillium chrysogenum V11 and its effective semi-synthesis
- …