148 research outputs found
Small Complete Minors Above the Extremal Edge Density
A fundamental result of Mader from 1972 asserts that a graph of high average
degree contains a highly connected subgraph with roughly the same average
degree. We prove a lemma showing that one can strengthen Mader's result by
replacing the notion of high connectivity by the notion of vertex expansion.
Another well known result in graph theory states that for every integer t
there is a smallest real c(t) so that every n-vertex graph with c(t)n edges
contains a K_t-minor. Fiorini, Joret, Theis and Wood conjectured that if an
n-vertex graph G has (c(t)+\epsilon)n edges then G contains a K_t-minor of
order at most C(\epsilon)log n. We use our extension of Mader's theorem to
prove that such a graph G must contain a K_t-minor of order at most
C(\epsilon)log n loglog n. Known constructions of graphs with high girth show
that this result is tight up to the loglog n factor
Exact Bounds for Some Hypergraph Saturation Problems
Let W_n(p,q) denote the minimum number of edges in an n x n bipartite graph G
on vertex sets X,Y that satisfies the following condition; one can add the
edges between X and Y that do not belong to G one after the other so that
whenever a new edge is added, a new copy of K_{p,q} is created. The problem of
bounding W_n(p,q), and its natural hypergraph generalization, was introduced by
Balogh, Bollob\'as, Morris and Riordan. Their main result, specialized to
graphs, used algebraic methods to determine W_n(1,q).
Our main results in this paper give exact bounds for W_n(p,q), its hypergraph
analogue, as well as for a new variant of Bollob\'as's Two Families theorem. In
particular, we completely determine W_n(p,q), showing that if 1 <= p <= q <= n
then
W_n(p,q) = n^2 - (n-p+1)^2 + (q-p)^2.
Our proof applies a reduction to a multi-partite version of the Two Families
theorem obtained by Alon. While the reduction is combinatorial, the main idea
behind it is algebraic
- …