26,014 research outputs found
Power load forecasting
For the electric power factory, the power load forecasting problem, including load forecasting and consumption predicting, is crucial to work planning. According to the predicting time, it can be divided into long-term forecasting, mid-term forecasting, short-term forecasting and ultra-short-term forecasting. The long-term and mid-term forecasting are mainly used for macro control, and their forecasting time arrange are from one year to ten years and from one month to twelve months respectively. The short-term forecasting which prediction time is from one day to seven days is used in generators macroeconomic control, power exchange plan and some other areas. Predicting the situation in next 24 hours is named as the ultra-short-term forecasting which is used for failure prediction, emergency treatment and frequency control. In general, the forecast accuracy is different for different prediction time. The longer is the time, the lower accurate is the prediction.
As the unique power supplier in Huizhou (China), Huizhou Electric Power wants to know the solution to the problems: 1. Prediction of the total electrical consumption and the peak load of the city in 2006 based on the economy development and the feature of the city. 2. Monthly prediction of the consumption and peak load in 2006. 3. Daily prediction of the consumption and peak load from July 10th to 16th in 2006. 4. Prediction of the load every 15 minutes of July 10th. 5. Real-time forecasting which means to amend the existing load prediction for next 15 minute
Feasibility study of thin film tunnel cathodes
Thin film tunnel cathodes evaluated for use in ultrahigh vacuum gauge
Recommended from our members
Laser-assisted photothermal imprinting of nanocomposite
We report on a laser-assisted photothermal imprinting method for directly patterning carbon
nanofiber-reinforced polyethylene nanocomposite. A single laser pulse from a solid state
Nd:YAG laser (10 ns pulse, 532 nm and 355 nm wavelengths) is used to melt/soften a thin skin
layer of the polymer nanocomposite. Meanwhile, a fused quartz mold with micro-sized surface
relief structures is pressed against the surface of the composite. Successful pattern transfer is
realized upon releasing the quartz mold. Although polyethylene is transparent to the laser beam,
the carbon nanofibers in the high density polyethylene (HDPE) matrix absorb the laser energy
and convert it into heat. Numerical heat conduction simulation shows the HDPE matrix is
partially melted or softened, allowing for easier imprinting of the relief pattern of the quartz
mold.Mechanical Engineerin
- …