212 research outputs found

    Parallelization of the fast algorithm for computation of dominators in a flowgraph

    Get PDF
    Computer Scienc

    Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms

    Get PDF
    Abstract Background Autophagy is an indispensable lysosomal self-digestion process involved in the degradation of aggregated proteins and damaged organelles. Autophagy is associated with the several pathological processes, including cancer. Cancer stem cells (CSCs) play significant roles in cancer initiation, progression and drug resistance. Recent studies have demonstrated the antitumor activities of plant-derived chemopreventive agent rottlerin (Rott). However, the molecular mechanism by which Rott induces autophagy in breast CSCs has not been investigated. Results The objectives of this study were to examine the molecular mechanism by which Rott induces autophagy which leads to apoptosis in breast CSCs. Treatment of breast CSCs with Rott for 24 h resulted in a concentration dependent induction of autophagy, followed by apoptosis as measured by flow cytometry. Electron microscopy confirmed the presence of autophagosomes in Rott treated breast CSCs. Western blot analysis showed that Rott treatment increased the expression of LC3, Beclin-1 and Atg12 that are accumulated during autophagy. Prolonged exposure of breast CSCs to Rott caused apoptosis which was associated with the suppression of phosphorylated Akt and mTOR, upregulation of phosphorylated AMPK, and downregulation of anti-apoptosis Bcl-2, Bcl-XL, XIAP and cIAP-1. Knock-down of Atg7 or Beclin-1 by shRNA inhibited Rott-induced autophagy at 24 h. Our study also demonstrates that pre-treatment of breast CSCs with autophagosome inhibitors 3-methyladenine and Bafilomycin, as well as protein synthesis inhibitor cycloheximide inhibited Rott-induced autophagy and apoptosis. Rott induces autophagy via extensive cytoplasmic vacuolization in breast CSCs. Molecular docking results between C2-domain of protein kinase C-delta and Rott indicated that both hydrogen bonding and hydrophobic interactions contributed significantly for ligand binding with minimum binding affinity of ≈ 7.5 Kcal/mol. Although, autophagy inhibitors suppress the formation of cytoplasmic vacuolization and autophagy in breast CSCs, the potency of Rott to induce autophagy and apoptosis might be based on its capability to activate several pathways such as AMPK and proteasome inhibition. Conclusions A better understanding of the relationship between autophagy and apoptosis would eventually allow us to discover novel drugs for the treatment of breast cancer by eliminating CSCs.Peer Reviewe

    Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have recently shown that curcumin (a diferuloylmethane, the yellow pigment in turmeric) enhances apoptosis-inducing potential of TRAIL in prostate cancer PC-3 cells, and sensitizes TRAIL-resistant LNCaP cells <it>in vitro </it>through multiple mechanisms. The objectives of this study were to investigate the molecular mechanisms by which curcumin sensitized TRAIL-resistant LNCaP xenografts <it>in vivo</it>.</p> <p>Methods</p> <p>Prostate cancer TRAIL-resistant LNCaP cells were implanted in Balb c nude mice to examine the effects of curcumin and/or TRAIL on tumor growth and genes related to apoptosis, metastasis and angiogenesis.</p> <p>Results</p> <p>Curcumin inhibited growth of LNCaP xenografts in nude mice by inducing apoptosis (TUNEL staining) and inhibiting proliferation (PCNA and Ki67 staining), and sensitized these tumors to undergo apoptosis by TRAIL. In xenogrfated tumors, curcumin upregulated the expression of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax, Bak, p21<sup>/WAF1</sup>, and p27<sup>/KIP1</sup>, and inhibited the activation of NFκB and its gene products such as cyclin D1, VEGF, uPA, MMP-2, MMP-9, Bcl-2 and Bcl-X<sub>L</sub>. The regulation of death receptors and members of Bcl-2 family, and inactivation of NFκB may sensitize TRAIL-resistant LNCaP xenografts. Curcumin also inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells in mice.</p> <p>Conclusion</p> <p>The ability of curcumin to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that curcumin alone or in combination with TRAIL can be used for prostate cancer prevention and/or therapy.</p

    i-rDNA: alignment-free algorithm for rapid in silico detection of ribosomal gene fragments from metagenomic sequence data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obtaining accurate estimates of microbial diversity using rDNA profiling is the first step in most metagenomics projects. Consequently, most metagenomic projects spend considerable amounts of time, money and manpower for experimentally cloning, amplifying and sequencing the rDNA content in a metagenomic sample. In the second step, the entire genomic content of the metagenome is extracted, sequenced and analyzed. Since DNA sequences obtained in this second step also contain rDNA fragments, rapid <it>in silico</it> identification of these rDNA fragments would drastically reduce the cost, time and effort of current metagenomic projects by entirely bypassing the experimental steps of primer based rDNA amplification, cloning and sequencing. In this study, we present an algorithm called i-rDNA that can facilitate the rapid detection of 16S rDNA fragments from amongst millions of sequences in metagenomic data sets with high detection sensitivity.</p> <p>Results</p> <p>Performance evaluation with data sets/database variants simulating typical metagenomic scenarios indicates the significantly high detection sensitivity of i-rDNA. Moreover, i-rDNA can process a million sequences in less than an hour on a simple desktop with modest hardware specifications.</p> <p>Conclusions</p> <p>In addition to the speed of execution, high sensitivity and low false positive rate, the utility of the algorithmic approach discussed in this paper is immense given that it would help in bypassing the entire experimental step of primer-based rDNA amplification, cloning and sequencing. Application of this algorithmic approach would thus drastically reduce the cost, time and human efforts invested in all metagenomic projects.</p> <p>Availability</p> <p>A web-server for the i-rDNA algorithm is available at <url>http://metagenomics.atc.tcs.com/i-rDNA/</url></p

    Hedgehog Signaling Antagonist GDC-0449 (Vismodegib) Inhibits Pancreatic Cancer Stem Cell Characteristics: Molecular Mechanisms

    Get PDF
    Recent evidence from in vitro and in vivo studies has demonstrated that aberrant reactivation of the Sonic Hedgehog (SHH) signaling pathway regulates genes that promote cellular proliferation in various human cancer stem cells (CSCs). Therefore, the chemotherapeutic agents that inhibit activation of Gli transcription factors have emerged as promising novel therapeutic drugs for pancreatic cancer. GDC-0449 (Vismodegib), orally administrable molecule belonging to the 2-arylpyridine class, inhibits SHH signaling pathway by blocking the activities of Smoothened. The objectives of this study were to examine the molecular mechanisms by which GDC-0449 regulates human pancreatic CSC characteristics in vitro.GDC-0499 inhibited cell viability and induced apoptosis in three pancreatic cancer cell lines and pancreatic CSCs. This inhibitor also suppressed cell viability, Gli-DNA binding and transcriptional activities, and induced apoptosis through caspase-3 activation and PARP cleavage in pancreatic CSCs. GDC-0449-induced apoptosis in CSCs showed increased Fas expression and decreased expression of PDGFRα. Furthermore, Bcl-2 was down-regulated whereas TRAIL-R1/DR4 and TRAIL-R2/DR5 expression was increased following the treatment of CSCs with GDC-0449. Suppression of both Gli1 plus Gli2 by shRNA mimicked the changes in cell viability, spheroid formation, apoptosis and gene expression observed in GDC-0449-treated pancreatic CSCs. Thus, activated Gli genes repress DRs and Fas expressions, up-regulate the expressions of Bcl-2 and PDGFRα and facilitate cell survival.These data suggest that GDC-0499 can be used for the management of pancreatic cancer by targeting pancreatic CSCs

    HabiSign: a novel approach for comparison of metagenomes and rapid identification of habitat-specific sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the primary goals of comparative metagenomic projects is to study the differences in the microbial communities residing in diverse environments. Besides providing valuable insights into the inherent structure of the microbial populations, these studies have potential applications in several important areas of medical research like disease diagnostics, detection of pathogenic contamination and identification of hitherto unknown pathogens. Here we present a novel and rapid, alignment-free method called HabiSign, which utilizes patterns of tetra-nucleotide usage in microbial genomes to bring out the differences in the composition of both diverse and related microbial communities.</p> <p>Results</p> <p>Validation results show that the metagenomic signatures obtained using the HabiSign method are able to accurately cluster metagenomes at biome, phenotypic and species levels, as compared to an average tetranucleotide frequency based approach and the recently published dinucleotide relative abundance based approach. More importantly, the method is able to identify subsets of sequences that are specific to a particular habitat. Apart from this, being alignment-free, the method can rapidly compare and group multiple metagenomic data sets in a short span of time.</p> <p>Conclusions</p> <p>The proposed method is expected to have immense applicability in diverse areas of metagenomic research ranging from disease diagnostics and pathogen detection to bio-prospecting. A web-server for the HabiSign algorithm is available at <url>http://metagenomics.atc.tcs.com/HabiSign/</url>.</p
    corecore