170 research outputs found
Interpretations of galactic center gamma-ray excess confronting the PandaX-II constraints on dark matter-neutron spin-dependent scatterings in the NMSSM
The Weakly Interacting Massive Particle (WIMP) has been one of the most
attractive candidates for Dark Matter (DM), and the lightest neutralino
() in the Next-to-Minimal Supersymmetric Standard Model
(NMSSM) is an interesting realization of WIMP. The Galactic Center Excess (GCE)
can be explained by WIMP DM annihilations in the sky. In this work we consider
the -NMSSM where the singlet and Singlino components
play important roles in the Higgs and DM sector. Guided by our analytical
arguments, we perform a numerical scan over the NMSSM parameter space for the
GCE explanation by considering various observables such as the Standard Model
(SM) Higgs data measured by the ATLAS and CMS experiments, and the -physics
observables and .
We find that the correlation between the coupling in
and the coupling in DM-neutron Spin Dependent (SD)
scattering rate makes all samples we
obtain for GCE explanation get excluded by the PandaX-II results. Although the
DM resonant annihilation scenarios may be beyond the reach of our analytical
approximations and scan strategy, the aforementioned correlation can be a
reasonable motivation for future experiments such as PandaX-nT to further test
the NMSSM interpretation of GCE.Comment: 11 pages, 4 figures, meeting the published version by EPJ
Explanation of the ATLAS Z-peaked excess by squark pair production in the NMSSM
The ATLAS collaboration recently reported a excess in the
leptonic- channel. We intend to interpret this excess by
squark pair production in the Next-to-Minimal Supersymmetric Standard Model
(NMSSM). The decay chain we employ is , where and denote the
lightest and the next-to-lightest neutralinos with singlino and bino as their
dominant components respectively. Our simulations indicate that after
considering the constraints from the ATLAS searches for
signal the central value of the excess can be obtained for , and if the constraint from the CMS on- search is
further considered, more than 10 signal events are still attainable for
. Compared with the interpretation by
gluino pair production, the squark explanation allows for a significantly wider
range of as well as a less compressed SUSY mass spectrum. We
also show that the squark explanation will be readily tested at the initial
stage of the 14 TeV LHC.Comment: 19 pages, 4 figure
Sneutrino DM in the NMSSM with inverse seesaw mechanism
In supersymmetric theories like the Next-to-Minimal Supersymmetric Standard
Model (NMSSM), the lightest neutralino with bino or singlino as its dominant
component is customarily taken as dark matter (DM) candidate. Since light
Higgsinos favored by naturalness can strength the couplings of the DM and thus
enhance the DM-nucleon scattering rate, the tension between naturalness and DM
direct detection results becomes more and more acute with the improved
experimental sensitivity. In this work, we extend the NMSSM by inverse seesaw
mechanism to generate neutrino mass, and show that in certain parameter space
the lightest sneutrino may act as a viable DM candidate, i.e. it can annihilate
by multi-channels to get correct relic density and meanwhile satisfy all
experimental constraints. The most striking feature of the extension is that
the DM-nucleon scattering rate can be naturally below its current experimental
bounds regardless of the higgsino mass, and hence it alleviates the tension
between naturalness and DM experiments. Other interesting features include that
the Higgs phenomenology becomes much richer than that of the original NMSSM due
to the relaxed constraints from DM physics and also due to the presence of
extra neutrinos, and that the signatures of sparticles at colliders are quite
different from those with neutralino as DM candidate.Comment: 33 page
Explanation of the ATLAS Z-peaked excess in the NMSSM
Recently the ATLAS collaboration reported a excess in the
leptonic- channel. This may be interpreted in the
Next-to-Minimal Supersymmetric Standard Model (NMSSM) by gluino pair production
with the decay chain , where and denote the
lightest and the next-to-lightest neutralinos with singlino and bino as their
dominant components respectively. After exploring the relevant parameter space
of the NMSSM by considering the constraints from the ATLAS searches for signals, we conclude that the NMSSM is able to explain the excess
at level with the number of the signal events reaching its measured
central value in optimal cases, and the best explanation comes from a
compressed spectrum such as ,
and . We also check the consistency of the ATLAS results with the
null result of the CMS on- search. We find that under the CMS limits at
C.L., the event number of the ATLAS on- signal can still reach 11 in
our scenario, which is about away from the measured central value.Comment: 18 pages, 2 figure
Pair production of 125 GeV Higgs boson in the SM extension with color-octet scalars at the LHC
Although the Higgs boson mass and single production rate have been determined
more or less precisely, its other properties may deviate significantly from its
predictions in the standard model (SM) due to the uncertainty of Higgs data. In
this work we study the Higgs pair production at the LHC in the Manohar-Wise
model, which extends the SM by one family of color-octet and isospin-doublet
scalars. We first scanned over the parameter space of the Manohar-Wise model
considering exprimental constraints and performed fits in the model to the
latest Higgs data by using the ATLAS and CMS data separately. Then we
calculated the Higgs pair production rate and investigated the potential of its
discovery at the LHC14. We conclude that: (i) Under current constrains
including Higgs data after Run I of the LHC, the cross section of Higgs pair
production in the Manohar-Wise model can be enhanced up to even times
prediction in the SM. (ii) Moreover, the sizable enhancement comes from the
contributions of the CP-odd color-octet scalar . For lighter scalar
and larger values of , the cross section of Higgs pair
production can be much larger. (iii) After running again of LHC at 14 TeV, most
of the parameter spaces in the Manohar-Wise model can be test. For an
integrated luminosity of 100 fb at the LHC14, when the normalized ratio
, the process of Higgs pair production can be detected.Comment: 13 pages, 4 figure
Interpreting The 750 GeV Diphoton Excess Within Topflavor Seesaw Model
We propose to interpret the 750 GeV diphoton excess in a typical topflavor
seesaw model. The new resonance X can be identified as a CP-even scalar
emerging from a certain bi-doublet Higgs field. Such a scalar can couple to
charged scalars, fermions as well as heavy gauge bosons predicted by the model,
and consequently all of the particles contribute to the diphoton decay mode of
the X. Numerical analysis indicates that the model can predict the central
value of the diphoton excess without contradicting any constraints from 8 TeV
LHC, and among the constraints, the tightest one comes from the Z \gamma
channel, \sigma_{8 {\rm TeV}}^{Z \gamma} \lesssim 3.6 {\rm fb}, which requires
\sigma_{13 {\rm TeV}}^{\gamma \gamma} \lesssim 6 {\rm fb} in most of the
favored parameter space.Comment: Major changes, 17 pages, 4 figure, typos corrected, calculation
details adde
Interpreting the galactic center gamma-ray excess in the NMSSM
In the Next-to-Minimal Supersymmetric Standard Model (NMSSM), all
singlet-dominated particles including one neutralino, one CP-odd Higgs boson
and one CP-even Higgs boson can be simultaneously lighter than about 100 GeV.
Consequently, dark matter (DM) in the NMSSM can annihilate into multiple final
states to explain the galactic center gamma-ray excess (GCE). In this work we
take into account the foreground and background uncertainties for the GCE and
investigate these explanations. We carry out a sophisticated scan over the
NMSSM parameter space by considering various experimental constraints such as
the Higgs data, -physics observables, DM relic desnity, LUX experiment and
the dSphs constraints. Then for each surviving parameter point we perform a fit
to the GCE spectrum by using the correlation matrix that incorporates both the
statistical and systematic uncertainties of the measured excess. After
examining the properties of the obtained GCE solutions, we conclude that the
GCE can be well explained by the pure annihilations and with being the lighter singlet-dominated CP-odd Higgs boson and
denoting the singlet-dominated CP-even Higgs boson or SM-like Higgs
boson, and it can also be explained by the mixed annihilation . Among these annihilation channels,
can provide the best
interpretation with the corresponding -value reaching 0.55. We also discuss
to what extent the future DM direct detection experiments can explore the GCE
solutions and conclude that the XENON-1T experiment is very promising in
testing nearly all the solutions.Comment: 31 pages, 7 figure
- β¦