3,040 research outputs found
Exploring the possibility of enhancing the figure-of-merit ( 2) of NaCoO: A combined experimental and theoretical study
Search of new thermoelectric (TE) materials with high
\textit{figure-of-merit} (ZT) is always inspired the researcher in TE field.
Here, we present a combined experimental and theoretical study of TE properties
of NaCoO compound in high-temperature region. The experimental
Seebeck coefficient (S) is found to vary from 64 to 118 V/K in the
temperature range K. The positive values of S are indicating the
dominating p-type behaviour of the compound. The observed value of thermal
conductivity () is 2.2 W/m-K at 300 K. In the temperature region
K, the value of increases up to 2.6 W/m-K and then
decreases slowly till 620 K with the corresponding value of 2.4 W/m-K.
We have also carried out the theoretical calculations and the best matching
between experimental and calculated values of transport properties are observed
in spin-polarized calculation within DFT+\textit{U} by chosen \textit{U} = 4
eV. The maximum calculated value of ZT is found to be 0.67 at 1200 K for
p-type conduction. Our computational study suggests that the possibility of
n-type behaviour of the compound which can lead to a large value of ZT at
higher temperature region. Electron doping of 5.110
cm is expected to give rise the high ZT value of 2.7 at 1200 K.
Using these temperature-dependent ZT values, we have calculated the maximum
possible values of efficiency () of thermoelectric generator (TEG) made
by p and n-type NaCoO. The present study suggests that one can
get the efficiency of a TE cell as high as 11 when the cold and hot
end temperature are fixed at 300 K and 1200 K, respectively. Such high values
of ZT and efficiency suggest that NaCoO can be used as a
potential candidate for high-temperature TE applications
Mitochondrial fusion and Bid-mediated mitochondrial apoptosis are perturbed by alcohol with distinct dependence on its metabolism
Environmental stressors like ethanol (EtOH) commonly target mitochondria to influence the cell’s fate. Recent literature supports that chronic EtOH exposure suppresses mitochondrial dynamics, central to quality control, and sensitizes mitochondrial permeability transition pore opening to promote cell death. EtOH-induced tissue injury is primarily attributed to its toxic metabolic products but alcoholism also impairs tissues that poorly metabolize EtOH. We embarked on studies to determine the respective roles of EtOH and its metabolites in mitochondrial fusion and tBid-induced mitochondrial apoptosis. We used HepG2 cells that do not metabolize EtOH and its engineered clone that expresses EtOH-metabolizing Cytochrome P450 E2 and alcohol dehydrogenase (VL-17A cells). We found that fusion impairment by prolonged EtOH exposure was prominent in VL-17A cells, probably owing to reactive oxygen species increase in the mitochondrial matrix. There was no change in fusion protein abundance, mitochondrial membrane potential or Ca2+ uptake. By contrast, prolonged EtOH exposure promoted tBid-induced outer mitochondrial membrane permeabilization and cell death only in HepG2 cells, owing to enhanced Bak oligomerization. Thus, mitochondrial fusion inhibition by EtOH is dependent on its metabolites, whereas sensitization to tBid-induced death is mediated by EtOH itself. This difference is of pathophysiological relevance because of the tissue-specific differences in EtOH metabolism. © 2018, The Author(s)
Spontaneous breaking of time reversal symmetry in strongly interacting two dimensional electron layers in silicon and germanium
We report experimental evidence of a remarkable spontaneous time reversal
symmetry breaking in two dimensional electron systems formed by atomically
confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si)
and germanium (Ge). Weak localization corrections to the conductivity and the
universal conductance fluctuations were both found to decrease rapidly with
decreasing doping in the Si:P and Ge:P layers, suggesting an effect
driven by Coulomb interactions. In-plane magnetotransport measurements indicate
the presence of intrinsic local spin fluctuations at low doping, providing a
microscopic mechanism for spontaneous lifting of the time reversal symmetry.
Our experiments suggest the emergence of a new many-body quantum state when two
dimensional electrons are confined to narrow half-filled impurity bands
The frequency of occurrence and nature of recombinant feline leukemia viruses in the induction of multicentric lymphoma by infection of the domestic cat with FeLV-945
AbstractDuring feline leukemia virus (FeLV) infection in the domestic cat, viruses with a novel envelope gene arise by recombination between endogenous FeLV-related elements and the exogenous infecting species. These recombinant viruses (FeLV-B) are of uncertain disease association, but have been linked to the induction of thymic lymphoma. To assess the role of FeLV-B in the induction of multicentric lymphoma and other non-T-cell disease, the frequency of occurrence and nature of FeLV-B were examined in diseased tissues from a large collection of FeLV-infected animals. Diseased tissues were examined by Southern blot and PCR amplification to detect the presence of FeLV-B. Further analysis was performed to establish the recombination junctions and infectivity of FeLV-B in diseased tissues. The results confirmed the frequent association of FeLV-B with thymic lymphoma but showed infrequent generation, low levels and lack of infectivity of FeLV-B in non-T-cell diseases including multicentric lymphoma
Global Trends in Space Access and Utilization
In the not-so-distant past, space access and air/space technology superiority were within the purview of the U.S. and former Soviet Union's respective space agencies, both vying for global leadership in space exploitation. In more recent years, with the emergence of the European Space Agency (ESA) member countries and Asian countries joining the family of space-faring nations, it is truer now more than ever that space access and utilization has become a truly global enterprise. In fact, according to the Space Report 2007, this enterprise is a $251-billion economy. It is possible to gauge the vitality of worldwide efforts from open sources in today's transparent, media-based society. In particular, print and web broadcasters regularly report and catalog global space activities for defense and civil purposes. For the purposes of this paper, a representative catalog of missions is used to illustrate the nature of the emerging "globalization." This paper highlights global trends in terms of not only the providers of space access, but also the end-users for the various recently accomplished missions. With well over 50 launches per year, in recent years, the launch-log reveals a surprising percentage of "cooperative or co-dependent missions" where different agencies, countries, and/or commercial entities are so engaged presumably to the benefit of all who participate. Statistics are cited and used to show that recently over d0% of the 50-plus missions involved multiple nations working collectively to deliver payloads to orbit. Observers, space policy professionals, and space agency leaders have eloquently proposed that it might require the combined resources and talents of multiple nations to advance human exploration goals beyond low earth orbit. This paper does not intend to offer new information with respect to whether international collaboration is necessary but to observe that, in continuing to monitor global trends, the results seem to support the thesis that a global interdependent effort with all its likely complexities is an increasingly viable and pragmatic option. The discussion includes a breakdown of space missions into those of civil (scientific), military, and strictly commercial nature. It concludes that all three are robust components of a globally diversified portfolio of activities relying, essentially, on a common space industrial base and space infrastructure. As in other industries, the distribution of space industry assets and knowledge across countries and continents enables a diverse suite of options and arrangements, particularly in the areas of civil and commercial space utilization. A survey of several ongoing bilateral and multilateral space collaboration examples are provided to augment the observations regarding multinational work in space
Barriers to infection of human cells by feline leukemia virus: insights into resistance to zoonosis
The human genome displays a rich fossil record of past gamma-retrovirus infections, yet no current epidemic is evident, despite environmental exposure to viruses that infect human cells in vitro. Feline leukemia viruses (FeLVs) rank high on this list, but domestic or workplace exposure has not been associated with detectable serological responses. Non-specific inactivation of gamma-retroviruses by serum factors appears insufficient to explain these observations. To investigate further we explored the susceptibility of primary and established human cell lines to FeLV-B, the most likely zoonotic variant. Fully permissive infection was common in cancer-derived cell lines, but was also a feature of non-transformed keratinocytes and lung fibroblasts. Cells of haematopoietic origin were less generally permissive and formed discrete groups on the basis of high or low intracellular protein expression and virion release. Potent repression was observed in primary human blood mononuclear cells and a subset of leukemia cell lines. However, the early steps of reverse transcription and integration appear to be unimpaired in non-permissive cells. FeLV-B was subject to G->A hypermutation with a predominant APOBEC3G signature in partially permissive cells but was not mutated in permissive cells or in non-permissive cells that block secondary viral spread. Distinct cellular barriers that protect primary human blood cells are likely to be important in protection against zoonotic infection with FeLV
Promoting motivation towards community health care: A qualitative study from nurses in Pakistan
Based on the extensive health care needs of Pakistani population, the idea of Community Health Nursing was introduced in 1985. The educational nursing institutes adopted nursing curriculum in order to produce competent nurses to meet the rising demands of society. However, very few numbers of nurses choose community health nursing as their career pathway in Pakistan. Based on the current observation, enhancing motivation among graduate nurses has always been viewed as a great challenge for the academic nursing institutions. This study was intended to explore motivating and de motivating factors in nurses towards community Health Nursing. By utilizing self concept based model of motivation, semi structured interviews were conducted with newly graduated nurses, nurse educators and nursing students. The findings revealed that certain traits, values and competencies are required to motivate nurses as well as to build their capacity towards working effectively in the community setting. Moreover, through this study several realistic recommendations by the participants are highlighted that could foster motivation among future nurses towards this field
Handwritten Digit Recognition Using Machine Learning Algorithms
Handwritten character recognition is one of the practically important issues in pattern recognition applications. The applications of digit recognition includes in postal mail sorting, bank check processing, form data entry, etc. The heart of the problem lies within the ability to develop an efficient algorithm that can recognize hand written digits and which is submitted by users by the way of a scanner, tablet, and other digital devices. This paper presents an approach to off-line handwritten digit recognition based on different machine learning technique. The main objective of this paper is to ensure effective and reliable approaches for recognition of handwritten digits. Several machines learning algorithm namely, Multilayer Perceptron, Support Vector Machine, NaFDA5; Bayes, Bayes Net, Random Forest, J48 and Random Tree has been used for the recognition of digits using WEKA. The result of this paper shows that highest 90.37% accuracy has been obtained for Multilayer Perceptron
- …