88 research outputs found
Enhancing semantic congruity effects with category-contingent comparative judgments
In each of two experiments the direction of a binary comparison was contingent on the category of the stimulus pair. In one experiment, participants had to compare the size of animals from memory. On congruent trials, they had to select the smaller animal if both were small and the larger if both were large and on incongruent trials they selected the larger if both were small and the smaller if both were large. In a second experiment, participants had to compare visual extents and the direction of the comparison was contingent on whether the lines were short or long. RTs were increased and semantic congruity effects were greatly amplified with the category contingent instructions relative to the conventional non-contingent instructions, precisely as predicted by the class of evidence accrual models of decisional processing and contrary to the single sample stage models of the semantic congruity effect
More Instructions Make Fewer Subtractions
Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; Öllinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that “participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load” (Adams et al., 2021, p. 258).
Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and Núñez, 2000; Fischer and Shaki, 2018). The universal attribution of “addition bias” or “subtraction neglect” to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021).
Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings
Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper
Language processing is influenced by sensorimotor experiences. Here, we review behavioral evidence for embodied and grounded influences in language processing across six linguistic levels of granularity. We examine (a) sub-word features, discussing grounded influences on iconicity (systematic associations between word form and meaning); (b) words, discussing boundary conditions and generalizations for the simulation of color, sensory modality, and spatial position; (c) sentences, discussing boundary conditions and applications of action direction simulation; (d) texts, discussing how the teaching of simulation can improve comprehension in beginning readers; (e) conversations, discussing how multi-modal cues improve turn taking and alignment; and (f) text corpora, discussing how distributional semantic models can reveal how grounded and embodied knowledge is encoded in texts. These approaches are converging on a convincing account of the psychology of language, but at the same time, there are important criticisms of the embodied approach and of specific experimental paradigms. The surest way forward requires the adoption of a wide array of scientific methods. By providing complimentary evidence, a combination of multiple methods on various levels of granularity can help us gain a more complete understanding of the role of embodiment and grounding in language processing
Replication of D Ganor-Stern, J Tzelgov (2008, JEPLMC 34(2), Exp. 2)
This is an independent replication as part of the Reproducibility Project: Psychology
- …