39 research outputs found

    Accretion and outflow activity on the late phases of pre-main-sequence evolution. The case of RZ Piscium

    Full text link
    RZ Psc is an isolated high-latitude post-T Tauri star that demonstrates a UX Ori-type photometric activity. The star shows very weak spectroscopic signatures of accretion, but at the same time possesses the unusual footprints of the wind in Na I D lines. In the present work we investigate new spectroscopic observations of RZ Psc obtained in 2014 during two observation runs. We found variable blueshifted absorption components (BACs) in lines of the other alcali metals, K I 7699 \AA\ and Ca II IR triplet. We also confirmed the presence of a weak emission component in the Hα\alpha line, which allowed us to estimate the mass accretion rate on the star as M˙\dot{M}\leq 710127 \cdot 10^{-12}Msun yr1^{-1}. We could not reveal any clear periodicity in the appearance of BACs in sodium lines. Nevertheless, the exact coincidence of the structure and velocities of the Na I D absorptions observed with the interval of about one year suggests that such a periodicity should exist

    Photometric activity of CQ Tau on the time interval of 125 years

    Full text link
    The star CQ Tau belongs to the family of UX Ori type stars. It has very complex photometric behavior and complex structure of the circumstellar environment. In our paper we constructed the historical 125 years light curve of this star basing on the published photometric observations. It follows that besides a random component characteristic of UX Ori type stars, the large amplitude periodic component with the 10 year period is also present. Its existence was suspected earlier in [11]. New observations confirm its reality. It points to an existence of the second component close to the star. The density waves and matter flows caused by the companion motion lead to periodic changes in the circumstellar extinction and brightness of the star. This result is discussed in context of the recent observations of CQ Tau with high angular resolution.Comment: 7 pages, 4 figures, accepted by Astrophysic

    Magnetic field and unstable accretion during AM Herculis low states

    Get PDF
    A study of AM Her low states in September 1990 and 1991 and June-July 1997 is reported from a coordinated campaign with observations obtained at the Haute-Provence observatory, at the 6-m telescope of the Special Astrophysical Observatory and at the 2.6m and 1.25m telescopes of the Crimean observatory. Spectra obtained at different dates when the source was in low states at a comparable V magnitude, show the presence of strong Zeeman absorption features and marked changes in emission lines with a day-to-day reappearance of the HeII (4686\AA) emission lines in 1991. Despite this variability, the magnetic field inferred from the fitting of the absorption spectrum with Zeeman hydrogen splitting, is remarkably constant with a best value of (12.5±\pm0.5)MG. Detailed analysis of the UBVRI light curves shows the presence of repetitive moderate amplitude (\sim 0.3-0.5 mag) flares predominantly red in colour. These flares are attributed to small accretion events and are compared to the large (\sim 2 mag.) blue flare reported by Shakhovskoy et al. (1993). We suggest that the general flaring activity observed during the low states is generated by accretion events. The different characteristics of the flares (colour and polarization) are the results of different shock geometries depending on the net mass accretion flux.Comment: accepted in Astronomy & Astrophysics (Main Journal), 10 pages, 6 Figures, Late

    V405 Aurigae: A High Magnetic Field Intermediate Polar

    Full text link
    Our simultaneous multicolor (UBVRI) circular polarimetry has revealed nearly sinusoidal variation over the WD spin cycle, and almost symmetric positive and negative polarization excursions. Maximum amplitudes are observed in the B and V bands (+-3 %). This is the first time that polarization peaking in the blue has been discovered in an IP, and suggests that V405 Aur is the highest magnetic field IP found so far. The polarized flux spectrum is similar to those found in polars with magnetic fields in the range B ~ 25-50 MG. Our low resolution circular spectropolarimetry has given evidence of transient features which can be fitted by cyclotron harmonics n = 6, 7, and 8, at a field of B = 31.5 +- 0.8 MG, consistent with the broad-band polarized flux spectrum. Timings of the circular polarization zero crossovers put strict upper limits on WD spin period changes and indicate that the WD in V405 Aur is currently accreting closely at the spin equilibrium rate, with very long synchronization timescales, T_s > 10^9 yr. For the observed spin to orbital period ratio, P_{spin}/P_{orb} = 0.0365, and P_{orb} ~ 4.15 hr, existing numerical accretion models predict spin equilibrium condition with B ~ 30 MG if the mass ratio of the binary components is q_1 ~ 0.4. The high magnetic field makes V405 Aur a likely candidate as a progenitor of a polar.Comment: To appear in The Astrophysical Journal, September 1 Issue (2008), 9 pages, 10 figure

    Irregular Mass Transfer in the Polars VV Puppis and V393 Pavonis during the Low State

    Full text link
    The polars VV Pup and V393 Pav were observed with XMM-Newton during states of low accretion rate with peak X-ray luminosities of ~1 x 10^30 and ~1 x 10^31 erg/s, respectively. In both polars, accretion onto the white dwarf was extremely irregular, and the accretion rate varied by more than 1 order of magnitude on timescales of ~1 hr. Our observations suggest that this type of irregular accretion is a common phenomenon in polars during the low state. The likely cause of the accretion rate fluctuations are coronal mass ejections or solar flares on the companion star that intermittently increase the mass transfer into the accretion stream. Our findings demonstrate that the companion stars in cataclysmic variables possess highly active atmospheres.Comment: Accepted for publication in ApJ, 16 pages, 3 figure

    "Inter-Longitude Astronomy" (ILA) project : current highlights and perspectives : I. Magnetic vs. non-magneticinteracting binary stars

    Get PDF
    We present a review of highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types classical, asynchronous, intermedi ate polars with 25 timescales corresponding to differ ent physical mechanisms and their combinations (part "Polar"); negative and positive superhumpers in nova-like and dwarf novae stars ("Superhumper"); symbiotic ("Symbiosis"); eclipsing variables with and without ev idence for a current mass transfer ("Eclipser") with a special emphasis on systems with a direct impact of the stream into the gainor star's atmosphere, which we propose to call "Impactors", or V361 Lyr-type stars. Other parts of the ILA project are "Stellar Bell" (pul sating variables of different types and periods - M, SR, RV Tau, RR Lyr, Delta Sct) and "New Variable".

    The complex variability of blazars: time-scales and periodicity analysis in S4 0954+65

    Full text link
    Among active galactic nuclei, blazars show extreme variability properties. We here investigate the case of the BL Lac object S4 0954+65 with data acquired in 2019–2020 by the Transiting Exoplanet Survey Satellite (TESS) and by the Whole Earth Blazar Telescope (WEBT) Collaboration. The 2-min cadence optical light curves provided by TESS during three observing sectors of nearly 1 month each allow us to study the fast variability in great detail. We identify several characteristic short-term time-scales, ranging from a few hours to a few days. However, these are not persistent, as they differ in the various TESS sectors. The long-term photometric and polarimetric optical and radio monitoring undertaken by the WEBT brings significant additional information, revealing that (i) in the optical, long-term flux changes are almost achromatic, while the short-term ones are strongly chromatic; (ii) the radio flux variations at 37 GHz follow those in the optical with a delay of about 3 weeks; (iii) the range of variation of the polarization degree and angle is much larger in the optical than in the radio band, but the mean polarization angles are similar; (iv) the optical long-term variability is characterized by a quasi-periodicity of about 1 month. We explain the source behaviour in terms of a rotating inhomogeneous helical jet, whose pitch angle can change in time.Accepted manuscrip

    The complex variability of blazars: time-scales and periodicity analysis in S4 0954+65

    Get PDF
    Among active galactic nuclei, blazars show extreme variability properties. We here investigate the case of the BL Lac object S4 0954+65 with data acquired in 2019-2020 by the Transiting Exoplanet Survey Satellite (TESS) and by the Whole Earth Blazar Telescope (WEBT) Collaboration. The 2-min cadence optical light curves provided by TESS during three observing sectors of nearly 1 month each allow us to study the fast variability in great detail. We identify several characteristic short-term time-scales, ranging from a few hours to a few days. However, these are not persistent, as they differ in the various TESS sectors. The long-term photometric and polarimetric optical and radio monitoring undertaken by the WEBT brings significant additional information, revealing that (i) in the optical, long-term flux changes are almost achromatic, while the short-term ones are strongly chromatic; (ii) the radio flux variations at 37 GHz follow those in the optical with a delay of about 3 weeks; (iii) the range of variation of the polarization degree and angle is much larger in the optical than in the radio band, but the mean polarization angles are similar; (iv) the optical long-term variability is characterized by a quasi-periodicity of about 1 month. We explain the source behaviour in terms of a rotating inhomogeneous helical jet, whose pitch angle can change in time
    corecore