2 research outputs found

    Improvement of Green Upconversion Monochromaticity by Doping Eu<sup>3+</sup> in Lu<sub>2</sub>O<sub>3</sub>:Yb<sup>3+</sup>/Ho<sup>3+</sup> Powders with Detailed Investigation of the Energy Transfer Mechanism

    No full text
    The monochromaticity improvement of green upconversion (UC) in Lu<sub>2</sub>O<sub>3</sub>:Yb<sup>3+</sup>/Ho<sup>3+</sup> powders has been successfully realized by tridoping Eu<sup>3+</sup>. The integral area ratio of green emission to red emission of Ho<sup>3+</sup> increases 4.3 times with increasing Eu<sup>3+</sup> doping concentration from 0 to 20 mol %. The energy transfer (ET) mechanism in the Yb<sup>3+</sup>/Ho<sup>3+</sup>/Eu<sup>3+</sup> tridoping system has been investigated carefully by visible and near-infrared (NIR) emission spectra along with the decay curves, revealing the existence of ET from the Ho<sup>3+</sup> <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> level tothe Eu<sup>3+</sup> <sup>5</sup>D<sub>0</sub> level and ET from the Ho<sup>3+</sup> <sup>5</sup>I<sub>6</sub> level to the Eu<sup>3+</sup> <sup>7</sup>F<sub>6</sub> level. In addition, the population routes of the red-emitting Ho<sup>3+</sup> <sup>5</sup>F<sub>5</sub> level in the Yb<sup>3+</sup>/Ho<sup>3+</sup> codoped system under 980 nm wavelength excitation have also been explored. The ET process from the Yb<sup>3+</sup> <sup>2</sup>F<sub>5/2</sub> level to the Ho<sup>3+</sup> <sup>5</sup>I<sub>7</sub> level and the cross-relaxation process between two nearby Ho<sup>3+</sup> ions in the <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> level and <sup>5</sup>I<sub>7</sub> level, respectively, have been demonstrated to be the dominant approaches for populating the Ho<sup>3+</sup> <sup>5</sup>F<sub>5</sub> level. The multiphonon relaxation process originating from the Ho<sup>3+</sup> <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> level is useless to populate the Ho<sup>3+</sup> <sup>5</sup>F<sub>5</sub> level. As the energy level gap between the Ho<sup>3+</sup> <sup>5</sup>I<sub>7</sub> level and Ho<sup>3+</sup> <sup>5</sup>I<sub>8</sub> level matches well with that between Eu<sup>3+</sup> <sup>7</sup>F<sub>6</sub> level and Eu<sup>3+</sup> <sup>7</sup>F<sub>0</sub> level, the energy of the Ho<sup>3+</sup> <sup>5</sup>I<sub>7</sub> level can be easily transferred to the Eu<sup>3+</sup> <sup>7</sup>F<sub>6</sub> level by an approximate resonant ET process, resulting in a serious decrease in the red UC emission intensity. Since this ET process is more efficient than the ET from the Ho<sup>3+</sup> <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> level to the Eu<sup>3+</sup> <sup>5</sup>D<sub>0</sub> level as well as the ET from the Ho<sup>3+</sup> <sup>5</sup>I<sub>6</sub> level to the Eu<sup>3+</sup> <sup>7</sup>F<sub>6</sub> level, the integral area ratio of green emission to red emission of Ho<sup>3+</sup> has been improved significantly

    Enhancement of Eu<sup>3+</sup> Red Upconversion in Lu<sub>2</sub>O<sub>3</sub>: Yb<sup>3+</sup>/Eu<sup>3+</sup> Powders under the Assistance of Bridging Function Originated from Ho<sup>3+</sup> Tridoping

    No full text
    The red upconversion (UC) emission of Eu<sup>3+</sup> ions in Lu<sub>2</sub>O<sub>3</sub>: Yb<sup>3+</sup>/Eu<sup>3+</sup> powders was successfully enhanced by tridoping Ho<sup>3+</sup> ions in the matrix, which is due to the bridging function of Ho<sup>3+</sup> ions. The experiment data manifest that, in Yb<sup>3+</sup>/Eu<sup>3+</sup>/Ho<sup>3+</sup> tridoped system, the Ho<sup>3+</sup> ions are first populated to the green emitting level <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> through the energy transfer (ET) processes from the excited Yb<sup>3+</sup> ions. Subsequently, the Ho<sup>3+</sup> ions at <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> level can transfer their energy to the Eu<sup>3+</sup> ions at the ground state, resulting in the population of Eu<sup>3+</sup> <sup>5</sup>D<sub>0</sub> level. With the assistance of the bridging function of Ho<sup>3+</sup> ion, this ET process is more efficient than the cooperative sensitization process between Yb<sup>3+</sup> ion and Eu<sup>3+</sup> ion. Compared with Lu<sub>2</sub>O<sub>3</sub>: 5 mol % Yb<sup>3+</sup>/1 mol % Eu<sup>3+</sup>, the UC intensity of Eu<sup>3+</sup> <sup>5</sup>D<sub>0</sub>→<sup>7</sup>F<sub>2</sub> transition in Lu<sub>2</sub>O<sub>3</sub>: 5 mol % Yb<sup>3+</sup>/1 mol % Eu<sup>3+</sup>/0.5 mol % Ho<sup>3+</sup> is increased by a factor of 8
    corecore