2,685 research outputs found
Conservation of structure and mechanism in primary and secondary transporters exemplified by SiaP, a sialic acid binding virulence factor from Haemophilus influenzae
Extracytoplasmic solute receptors (ESRs) are important components of solute uptake systems in bacteria, having been studied extensively as parts of ATP binding cassette transporters. Herein we report the first crystal structure of an ESR protein from a functionally characterized electrochemical ion gradient-dependent secondary transporter. This protein, SiaP, forms part of a tripartite ATP-independent periplasmic transporter specific for sialic acid in Haemophilus influenzae. Surprisingly, the structure reveals an overall topology similar to ATP binding cassette ESR proteins, which is not apparent from the sequence, demonstrating that primary and secondary transporters can share a common structural component. The structure of SiaP in the presence of the sialic acid analogue 2,3-didehydro-2-deoxyN-acetylneuraminic acid reveals the ligand bound in a deep cavity with its carboxylate group forming a salt bridge with a highly conserved Arg residue. Sialic acid binding, which obeys simple bimolecular association kinetics as determined by stopped-flow fluorescence spectroscopy, is accompanied by domain closure about a hinge region and the kinking of an alpha-helix hinge component. The structure provides insight into the evolution, mechanism, and substrate specificity of ESR-dependent secondary transporters that are widespread in prokaryotes
Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas
The bile duct system and pancreas show many similarities due to their anatomical proximity and common embryological origin. Consequently, preneoplastic and neoplastic lesions of the bile duct and pancreas share analogies in terms of
molecular, histological and pathophysiological features. Intraepithelial neoplasms are reported in biliary tract, as biliary intraepithelial neoplasm (BilIN), and in pancreas, as pancreatic intraepithelial neoplasm (PanIN). Both can evolve
to invasive carcinomas, respectively cholangiocarcinoma (CCA) and pancreatic ductal adenocarcinoma (PDAC). Intraductal papillary neoplasms arise in biliary tract and pancreas. Intraductal papillary neoplasm of the biliary tract (IPNB)
share common histologic and phenotypic features such as pancreatobiliary, gastric, intestinal and oncocytic types, and biological behavior with the pancreatic counterpart, the intraductal papillary mucinous neoplasm of the pancreas (IPMN). All these neoplastic lesions exhibit similar immunohistochemical phenotypes, suggesting a common carcinogenic process.
Indeed, CCA and PDAC display similar clinic-pathological features as growth pattern, poor response to conventional chemotherapy and radiotherapy and, as a consequence, an unfavorable prognosis. The objective of this review is to discuss similarities and differences between the neoplastic lesions of the pancreas and biliary tract with potential implications on a common origin from similar stem/progenitor cells
Outcomes analysis of new entrant screening for active tuberculosis in Heathrow and Gatwick airports, United Kingdom 2009/2010
BACKGROUND: In 2012, the United Kingdom (UK) Government announced that the new entrant screening for active tuberculosis (TB) in Heathrow and Gatwick airports would end. Our study objective was to estimate screening yield and diagnostic accuracy, and identify those at risk of active TB after entry. METHODS: We designed a retrospective cohort study and linked new entrants screened from June 2009 to September 2010 through probabilistic matching with UK Enhanced TB Surveillance (ETS) data (June 2009 to December 2010). Yield was the proportion of cases reported to ETS within three months of airport screening in the screened population. To estimate screening diagnostic accuracy we assessed sensitivity, specificity, positive and negative predictive values. Through Poisson regression we identified groups at increased risk of TB diagnosis after entry. RESULTS: We identified 200,199 screened entrants, of these 59 had suspected TB at screening and were reported within 3 months to ETS (yield = 0.03 %). Sensitivity was 26 %; specificity was 99.7 %; positive predictive value was 13.2 %; negative predictive value was 99.9 %. Overall, 350 entrants were reported in ETS. Persons from countries with annual TB incidence higher than 150 cases per 100,000 population and refugees and asylum seekers were at increased risk of TB diagnosis after entry (population attributable risk 77 and 3 % respectively). CONCLUSION: Airport screening has very low screening yields, sensitivity and positive predictive value. New entrants coming from countries with annual TB incidence higher than 150 per 100,000 population, refugees and asylum seekers should be prioritised at pre- or post-entry screening
Anti-Candida targets and cytotoxicity of casuarinin isolated from Plinia cauliflora leaves in a bioactivity-guided study
Peer reviewedPublisher PD
Characterization of PECVD Silicon Nitride Photonic Components at 532 and 900 nm Wavelength
Low temperature PECVD silicon nitride photonic waveguides have been fabricated by both electron beam lithography and 200 mm DUV lithography. Propagation losses and bend losses were both measured at 532 and 900 nm wavelength, revealing sub 1dB/cm propagation losses for cladded waveguides at both wavelengths for single mode operation. Without cladding, propagation losses were measured to be in the 1-3 dB range for 532 nm and remain below 1 dB/cm for 900 nm for single mode waveguides. Bend losses were measured for 532 nm and were well below 0.1 dB per 90 degree bend for radii larger than 10 mu m
On the classification of OADP varieties
The main purpose of this paper is to show that OADP varieties stand at an
important crossroad of various main streets in different disciplines like
projective geometry, birational geometry and algebra. This is a good reason for
studying and classifying them. Main specific results are: (a) the
classification of all OADP surfaces (regardless to their smoothness); (b) the
classification of a relevant class of normal OADP varieties of any dimension,
which includes interesting examples like lagrangian grassmannians. Following
[PR], the equivalence of the classification in (b) with the one of
quadro-quadric Cremona transformations and of complex, unitary, cubic Jordan
algebras are explained.Comment: 13 pages. Dedicated to Fabrizio Catanese on the occasion of his 60th
birthday. To appear in a special issue of Science in China Series A:
Mathematic
Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis
Interest in the potential of DNA methylation in peripheral blood as a biomarker of cancer risk is increasing. We aimed to assess whether epigenome-wide DNA methylation measured in peripheral blood samples obtained before onset of the disease is associated with increased risk of breast cancer. We report on three independent prospective nested case-control studies from the European Prospective Investigation into Cancer and Nutrition (EPIC-Italy; n = 162 matched case-control pairs), the Norwegian Women and Cancer study (NOWAC; n = 168 matched pairs), and the Breakthrough Generations Study (BGS; n = 548 matched pairs). We used the Illumina 450k array to measure methylation in the EPIC and NOWAC cohorts. Whole-genome bisulphite sequencing (WGBS) was performed on the BGS cohort using pooled DNA samples, combined to reach 50× coverage across ~16 million CpG sites in the genome including 450k array CpG sites. Mean β values over all probes were calculated as a measurement for epigenome-wide methylation
IKs Computational Modeling to Enforce the Investigation of D242N, a KV7.1 LQTS Mutation
A KCNQ1 mutation, D242N, was found in a pair of twins and characterized at the cellular level. To investigate whether and how the mutation causes the clinically observed lost adaptation to fast heart rate, we performed a computational study. Firstly, we identified a new I Ks model based on voltage clamp experimental data. Then we included this formulation in the human action potential model of O'Hara Rudy (ORd) and simulate d the effects of the mutation. We also included adrenergic stimulation to the action potential, since the basal adrenergic tone is likely to affect the influence of I Ks on QTc in vivo. Finally, we simulated the pseudo-ECG, taking into account the heterogeneity of the cardiac wall. At the basal rate (60bpm), the mutation had negligible effects for all cell types, whereas at the high rate (180bpm), with concomitant β-adrenergic stimulation (mimicking exercise conditions), the mutant AP failed to adapt its duration to the same extent as the wild-type AP (e.g. 281ms vs. 267ms in M cells), due to a smaller amount of I Ks current. Pseudo-ECG results show only a slight rate adaptation, and the simulated QTc was significantly prolonged from 387ms to 493ms, similar to experimental recordings
Selective organic functionalization of polycrystalline silicon-germanium for bioMEMS applications
AbstractWe selectively immobilized organofunctional silanes on top of polycrystalline silicon-germanium (poly-SiGe) layers, as a first step towards the fabrication of poly-SiGe-based bioMEMS (biomedical MicroElectroMechanicalSystems) by means of standard UV photolithography. 3-aminopropyl-dimethyl-ethoxysilane (APDMES) and 3-aminopropyl-triethoxysilane (APTES) molecules were immobilized onto resist-patterned poly-SiGe surfaces. The protocols for surface hydroxylation and silane immobilization were designed to be CMOS-compatible and to avoid damage to photoresist. Silanized surfaces were investigated both by means of fluorescence microscopy, and by FEG-SEM observation after labeling with 30 nm-diameter gold nanoparticles (NPs). We report the silanization protocols, together with the results indicating successful organic functionalization of the samples
Simulation of the effects of extracellular calcium changes leads to a novel computational model of human ventricular action potential with a revised calcium handling
The importance of electrolyte concentrations for cardiac function is well established. Electrolyte variations can lead to arrhythmias onset, due to their important role in the action potential (AP) genesis and in maintaining cell homeostasis. However, most of the human AP computer models available in literature were developed with constant electrolyte concentrations, and fail to simulate physiological changes induced by electrolyte variations. This is especially true for Ca2+, even in the O’Hara-Rudy model (ORd), one of the most widely used models in cardiac electrophysiology. Therefore, the present work develops a new human ventricular model (BPS2020), based on ORd, able to simulate the inverse dependence of AP duration (APD) on extracellular Ca2+ concentration ([Ca2+]o), and APD rate dependence at 4 mM extracellular K+. The main changes needed with respect to ORd are: (i) an increased sensitivity of L-type Ca2+ current inactivation to [Ca2+]o; (ii) a single compartment description of the sarcoplasmic reticulum; iii) the replacement of Ca2+ release. BPS2020 is able to simulate the physiological APD-[Ca2+]o relationship, while also retaining the well-reproduced properties of ORd (APD rate dependence, restitution, accommodation and current block effects). We also used BPS2020 to generate an experimentally-calibrated population of models to investigate: (i) the occurrence of repolarization abnormalities in response to hERG current block; (ii) the rate adaptation variability; (iii) the occurrence of alternans and delayed after-depolarizations at fast pacing. Our results indicate that we successfully developed an improved version of ORd, which can be used to investigate electrophysiological changes and pro-arrhythmic abnormalities induced by electrolyte variations and current block at multiple rates and at the population level
- …