1 research outputs found
A Synchrotron-Based Hydroxyl Radical Footprinting Analysis of Amyloid Fibrils and Prefibrillar Intermediates with Residue-Specific Resolution
Structural models of the fibrils
formed by the 40-residue amyloid-β
(Aβ40) peptide in Alzheimer’s disease typically consist
of linear polypeptide segments, oriented approximately perpendicular
to the long axis of the fibril, and joined together as parallel in-register
β-sheets to form filaments. However, various models differ in
the number of filaments that run the length of a fibril, and in the
topological arrangement of these filaments. In addition to questions
about the structure of Aβ40 monomers in fibrils, there are important
unanswered questions about their structure in prefibrillar intermediates,
which are of interest because they may represent the most neurotoxic
form of Aβ40. To assess different models of fibril structure
and to gain insight into the structure of prefibrillar intermediates,
the relative solvent accessibility of amino acid residue side chains
in fibrillar and prefibrillar Aβ40 preparations was characterized
in solution by hydroxyl radical footprinting and structural mass spectrometry.
A key to the application of this technology was the development of
hydroxyl radical reactivity measures for individual side chains of
Aβ40. Combined with mass-per-length measurements performed by
dark-field electron microscopy, the results of this study are consistent
with the core filament structure represented by two- and three-filament
solid state nuclear magnetic resonance-based models of the Aβ40
fibril (such as 2LMN, 2LMO, 2LMP, and 2LMQ), with minor refinements,
but they are inconsistent with the more recently proposed 2M4J model. The results
also demonstrate that individual Aβ40 fibrils exhibit structural
heterogeneity or polymorphism, where regions of two-filament structure
alternate with regions of three-filament structure. The footprinting
approach utilized in this study will be valuable for characterizing
various fibrillar and nonfibrillar forms of the Aβ peptide