28 research outputs found
Dielectric mixtures -- electrical properties and modeling
In this paper, a review on dielectric mixtures and the importance of the
numerical simulations of dielectric mixtures are presented. It stresses on the
interfacial polarization observed in mixtures. It is shown that this
polarization can yield different dielectric responses depending on the
properties of the constituents and their concentrations. Open question on the
subject are also introduced.Comment: 40 pages 12 figures, to be appear in IEEE Trans. on Dielectric
Temperature and Field Induced Variations of Electric Conductivities of HTV Silicone Rubbers Derived from Measured Currents and Surface Potential Decay Characteristics
The temperature and field dependencies of electric conductivities of two types of silicone rubber-based polymers intended for use in high voltage direct current applications are presented and discussed. The conductivities obtained with the standard method by measuring a current through the material sample placed between metallic electrodes in response to the applied voltage are compared with those deduced from the measured potential decay on pre-charged material surface in an open circuit configuration. The measurements were conducted in the range of the applied electric field strength (0.5–5) kV/mm and temperatures ranging from 22 °C to 70 °C. It is shown that the values of the conductivities obtained by the two methods are in agreement and their temperature dependences obey Arrhenius law yielding similar activation energies.</jats:p
Charging and Discharge Currents in Low-Density Polyethylene and its Nanocomposite
Charging and discharge currents measured in low-density polyethylene (LDPE) and LDPE/Al2O3 nanocomposite are analyzed. The experiments were conducted at temperatures of 40–80 °C utilizing a consecutive charging–discharging procedure, with the charging step at electric fields varying between 20 and 60 kV/mm. A quasi-steady state of the charging currents was earlier observed for the nanofilled specimens and it was attributed to the enhanced trapping process at polymer–nanofiller interfaces. An anomalous behavior of the discharge currents was found at elevated temperatures for both the studied materials and its occurrence at lower temperatures in the nanofilled LDPE was due to the presence of deeply trapped charges at polymer–nanofiller interfaces. The field dependence of the quasi-steady charging currents is examined by testing for different conduction mechanisms. It is shown that the space-charge-limited process is dominant and the average trap site separation is estimated at less than 2 nm for the pristine LDPE and it is at about 5–7 nm for the LDPE/Al2O3 nanocomposite. Also, location of the trapping sites in the band gap structure of the nanofilled material is altered, which substantially weakens electrical transport as compared to the unfilled counterpart.</jats:p