46 research outputs found
Kinematically complete study on electron impact ionisation of aligned hydrogen molecules
Within the work presented here, single ionisation of spatially aligned hydrogen molecules by 200 eV electrons was studied in a kinematically complete experiment. For the first time, a comprehensive set of fully differential cross sections (FDCS) was obtained for this process on a molecular target. The direction of the internuclear axis was derived from the fragment emission of post-collision dissociation of the residual ion. Therefore, a protonic fragment was detected in coincidence with the two final-state electrons using a dedicated reaction microscope and sophisticated data analysis. For direct ionisation into the ionic ground state, existing theoretical cross sections for aligned molecules were tested. Additionally, we observed molecular frame angular distributions of Auger electrons emitted through dissociative autoionisation of H2. Earlier findings of kinematically incomplete experiments were reproduced, but the FDCS reveal structures so far unknown. Furthermore, for random alignment, differential cross sections at two distinct values of the mean internuclear distance were obtained, providing new arguments in the current discussion on the nature of discrepancies observed between atomic and molecular collisions
Strong-field physics with mid-IR fields
Strong-field physics is currently experiencing a shift towards the use of
mid-IR driving wavelengths. This is because they permit conducting experiments
unambiguously in the quasi-static regime and enable exploiting the effects
related to ponderomotive scaling of electron recollisions. Initial measurements
taken in the mid-IR immediately led to a deeper understanding of
photo-ionization and allowed a discrimination amongst different theoretical
models. Ponderomotive scaling of rescattering has enabled new avenues towards
time resolved probing of molecular structure. Essential for this paradigm shift
was the convergence of two experimental tools: 1) intense mid-IR sources that
can create high energy photons and electrons while operating within the
quasi-static regime, and 2) detection systems that can detect the generated
high energy particles and image the entire momentum space of the interaction in
full coincidence. Here we present a unique combination of these two essential
ingredients, namely a 160\~kHz mid-IR source and a reaction microscope
detection system, to present an experimental methodology that provides an
unprecedented three-dimensional view of strong-field interactions. The system
is capable of generating and detecting electron energies that span a six order
of magnitude dynamic range. We demonstrate the versatility of the system by
investigating electron recollisions, the core process that drives strong-field
phenomena, at both low (meV) and high (hundreds of eV) energies. The low energy
region is used to investigate recently discovered low-energy structures, while
the high energy electrons are used to probe atomic structure via laser-induced
electron diffraction. Moreover we present, for the first time, the correlated
momentum distribution of electrons from non-sequential double-ionization driven
by mid-IR pulses.Comment: 17 pages, 11 figure
Fivefold Differential Cross Sections for Ground-state Ionization of Aligned H₂ by Electron Impact
We discuss the ionization of aligned hydrogen molecules into their ionic ground state by 200 eV electrons. Using a reaction microscope, the complete electron scattering kinematics is imaged over a large solid angle. Simultaneously, the molecular alignment is derived from postcollision dissociation of the residual ion. It is found that the ionization cross section is maximized for small angles between the internuclear axis and the momentum transfer. Fivefold differential cross sections (5DCSs) reveal subtle differences in the scattering process for the distinct alignments. We compare our observations with theoretical 5DCSs obtained with an adapted molecular three-body distorted wave model that reproduces most of the results, although discrepancies remain
Two-Center Interferences in Dielectronic Transitions in H₂⁺+ He Collisions
Molecular two-center interferences in a collision induced excitation of H2+ projectile ions, with simultaneous ionization of helium target atoms, are investigated in a kinematically complete experiment. In the process under investigation, the helium atom is singly ionized and simultaneously the molecular hydrogen ion is dissociated. Different collision mechanisms are identified and interference fringes emerging from a correlated first-order mechanism and from an independent second-order process are observed
Chiral photoelectron angular distributions from ionization of achiral atomic and molecular species
We show that the combination of two achiral components - atomic or molecular
target plus a circularly polarized photon - can yield chirally structured
photoelectron angular distributions. For photoionization of CO, the angular
distribution of carbon K-shell photoelectrons is chiral when the molecular axis
is neither perpendicular nor (anti-)parallel to the light propagation axis. In
photo-double-ionization of He, the distribution of one electron is chiral, if
the other electron is oriented like the molecular axis in the former case and
if the electrons are distinguishable by their energy. In both scenarios, the
circularly polarized photon defines a plane with a sense of rotation and an
additional axis is defined by the CO molecule or one electron. This is
sufficient to establish an unambiguous coordinate frame of well-defined
handedness. To produce a chirally structured electron angular distribution,
such a coordinate frame is necessary, but not sufficient. We show that
additional electron-electron interaction or scattering processes are needed to
create the chiral angular distribution
Kinematically complete measurements of strong eld ionisation with mid-IR pulses
Recent observations of three unique peaks near 1 eV, 100 meV and 1 meV in the electron spectra generated by ionization using intense mid-IR pulses have challenged the current understanding of strong-field (SF) ionization. The results came as a surprise as they could not be reproduced by the standard version of the commonly used SF approximation. We present results showing the simultaneous measurement of all three low energy ranges at high resolution. This capability is possible due to a unique experimental combination of a high repetition rate mid-IR source, which allows probing deep in the quasi-static regime at high data rates, with a reaction microscope, which allows high resolution three dimensional imaging of the electron momentum distribution.Peer ReviewedPostprint (author's final draft
Pulse length dependence of photoelectron circular dichroism
We investigate photoelectron circular dichroism (PECD) with coherent light sources whose pulse durations range from femtoseconds to nanoseconds. To that end, we employed an optical parametric amplifier, an ultraviolet optical pulse shaper, and a nanosecond dye laser, all centered around a wavelength of 380 nm. A multiphoton ionization experiment on the gas-phase chiral prototype fenchone found that PECD measured via the 3s intermediate resonance is about 15% and robust over five orders of magnitude of the pulse duration. PECD remains robust despite ongoing molecular dynamics such as rotation, vibration, and internal conversion. We used the Lindblad equation to model the molecular dynamics. Under the assumption of a cascading internal conversion, from the 3p to the 3s and further to the ground state, we estimated the lifetimes of the internal conversion processes in the 100 fs regime
Imaging an aligned polyatomic molecule with laser-induced electron diffraction
Laser-induced electron diffraction is an evolving tabletop method, which aims
to image ultrafast structural changes in gas-phase polyatomic molecules with
sub-{\AA}ngstr\"om spatial and femtosecond temporal resolution. Here, we
provide the general foundation for the retrieval of multiple bond lengths from
a polyatomic molecule by simultaneously measuring the C-C and C-H bond lengths
in aligned acetylene. Our approach takes the method beyond the hitherto
achieved imaging of simple diatomic molecules and is based upon the combination
of a 160 kHz mid-IR few-cycle laser source with full three-dimensional
electron-ion coincidence detection. Our technique provides an accessible and
robust route towards imaging ultrafast processes in complex gas phase molecules
with atto- to femto-second temporal resolution.Comment: 16 pages, 4 figure
Low Energy (e, 2e) Study from the 1t₂ Orbital of Ch₄
Single ionization of the methane (CH4) 1t2 orbital by 54 eV electron impact has been studied experimentally and theoretically. The measured triple differential cross sections cover nearly a 4π solid angle for the emission of low energy electrons and a range of projectile scattering angles. Experimental data are compared with theoretical calculations from the distorted wave Born approximation and the molecular three-body distorted wave models. It is found that theory can give a proper description of the main features of experimental cross section only at smaller scattering angles. For larger scattering angles, significant discrepancies between experiment and theory are observed. The importance of the strength of nuclear scattering from the H-nuclei was theoretically tested by reducing the distance between the carbon nuclei and the hydrogen nuclei and improved agreement with experiment was found for both the scattering plane and the perpendicular plane