773 research outputs found
A Search for pair production of the LSP at the CLIC via RPV Decays
In this work we consider pair production of LSP tau-sneutrinos at the Compact
Lineer Collider. We assume that tau-sneutrinos decays in to e\textmu pair via
RPV interactions. Backgroundless subprocess
is analyzed in details. Achievable limits on
at and CL are
obtained depending on mass.Comment: 8 pages, 5 figure
Maxillary Tuberosity Reconstruction with Transport Distraction Osteogenesis
Severe bone loss due to pathology in the maxillary tuberosity region is a challenging problem both surgically and prosthetically. Large bone grafts have a poor survival rate due to the delicate bony architecture in this area and presence of the maxillary sinus. Our case presentation describes a new technique for reconstructing severe bony defect in the maxillary tuberosity with horizontal distraction osteogenesis in a 45-year-old man. A 4 × 6 × 3 cm cyst was discovered in the left maxillary molar region and enucleated. Three months postoperatively, the area had a severe bone defect extending to the zygomatic buttress superiorly and hamular notch posteriorly. Three months later, a bone segment including the right upper second premolar was osteotomised and distracted horizontally. The bone segment was distracted 15 mm distally. After consolidation, implants were placed when the distractor was removed. A fixed denture was loaded over the implants after 3 months. Complete alveolar bone loss extending to the cranial base can be reconstructed with transport distraction osteogenesis. Distalisation of the alveolar bone segment adjacent to the bony defect is an easy method for reconstructing such severe defects
Preparation and Structure of the Ion-Conducting Mixed Molecular Glass Ga2I3.17
Modern functional glasses have been prepared from a wide range of precursors, combining the benefits of their isotropic disordered structures with the innate functional behavior of their atomic or molecular building blocks. The enhanced ionic conductivity of glasses compared to their crystalline counterparts has attracted considerable interest for their use in solid-state batteries. In this study, we have prepared the mixed molecular glass Ga2I3.17 and investigated the correlations between the local structure, thermal properties, and ionic conductivity. The novel glass displays a glass transition at 60 °C, and its molecular make-up consists of GaI4– tetrahedra, Ga2I62– heteroethane ions, and Ga+ cations. Neutron diffraction was employed to characterize the local structure and coordination geometries within the glass. Raman spectroscopy revealed a strongly localized nonmolecular mode in glassy Ga2I3.17, coinciding with the observation of two relaxation mechanisms below Tg in the AC admittance spectra
Universality for orthogonal and symplectic Laguerre-type ensembles
We give a proof of the Universality Conjecture for orthogonal (beta=1) and
symplectic (beta=4) random matrix ensembles of Laguerre-type in the bulk of the
spectrum as well as at the hard and soft spectral edges. Our results are stated
precisely in the Introduction (Theorems 1.1, 1.4, 1.6 and Corollaries 1.2, 1.5,
1.7). They concern the appropriately rescaled kernels K_{n,beta}, correlation
and cluster functions, gap probabilities and the distributions of the largest
and smallest eigenvalues. Corresponding results for unitary (beta=2)
Laguerre-type ensembles have been proved by the fourth author in [23]. The
varying weight case at the hard spectral edge was analyzed in [13] for beta=2:
In this paper we do not consider varying weights.
Our proof follows closely the work of the first two authors who showed in
[7], [8] analogous results for Hermite-type ensembles. As in [7], [8] we use
the version of the orthogonal polynomial method presented in [25], [22] to
analyze the local eigenvalue statistics. The necessary asymptotic information
on the Laguerre-type orthogonal polynomials is taken from [23].Comment: 75 page
Distribution of entanglement in light-harvesting complexes and their quantum efficiency
Recent evidence of electronic coherence during energy transfer in
photosynthetic antenna complexes has reinvigorated the discussion of whether
coherence and/or entanglement has any practical functionality for these
molecular systems. Here we investigate quantitative relationships between the
quantum yield of a light-harvesting complex and the distribution of
entanglement among its components. Our study focusses on the entanglement yield
or average entanglement surviving a time scale comparable to the average
excitation trapping time. As a prototype system we consider the
Fenna-Matthews-Olson (FMO) protein of green sulphur bacteria and show that
there is an inverse relationship between the quantum efficiency and the average
entanglement between distant donor sites. Our results suggest that longlasting
electronic coherence among distant donors might help modulation of the
lightharvesting function.Comment: Version accepted for publication in NJ
Character Expansions for the Orthogonal and Symplectic Groups
Formulas for the expansion of arbitrary invariant group functions in terms of
the characters for the Sp(2N), SO(2N+1), and SO(2N) groups are derived using a
combinatorial method. The method is similar to one used by Balantekin to expand
group functions over the characters of the U(N) group. All three expansions
have been checked for all N by using them to calculate the known expansions of
the generating function of the homogeneous symmetric functions. An expansion of
the exponential of the traces of group elements, appearing in the finite-volume
gauge field partition functions, is worked out for the orthogonal and
symplectic groups.Comment: 20 pages, in REVTE
Intensive Care of a Weil's Disease With Multiorgan Failure
Leptospirosis is a commonly encountered type of zoonosis, especially in tropical regions. There is insufficient data regarding its frequency in non-tropical regions such as Turkey. Although leptospirosis presents with a mild icteric form in nearly 90% of cases, it can lead to Weils disease characterized by fever as well as fulminant hepatorenal and respiratory failure, in approximately 5 - 10% of cases. In this case report, we present a patient with Weil's disease, complicated with multiorgan failure
Sulfatide mediates attachment of Pseudomonas aeruginosa to human pharyngeal epithelial cells
Pseudomonas aeruginosa infections are particularly common in people with cystic fibrosis and despite regular treatment with antibiotics, lung damage due to chronic infection with P. aeruginosa remains the major cause of death in those patients. In order to initiate an infection, P. aeruginosa needs contact with the respiratory epithelial surface and by means of its adhesins i.e., fimbria, hemagglutinins,etc., it recognizes and adheres to the corresponding epithelial receptors. We treated P. aeruginosa strains isolated from sputum of cystic fibrosis patients with several glycolipids such as sulfatide, sulfated ganglioside mixture (GM1a, GD1b, GT1b), asialo-GM1 and galactocerebrosides to determine their effect on attachment with pharyngeal epithelial cells. Sulfated ganglioside mixture and sulfatide inhibited the attachment of P. aeruginosa significantly, whereas asialo-GM1, Gal-Cer and sodium sulfite had no effect on attachment inhibition. This finding suggests that sulfated glycoconjugates found in the extracellular matrix, in mucus and on the surface of epithelial cells of human trachea and lung mediates attachment of P. aeruginosa
A Random Matrix Model for Color Superconductivity at Zero Chemical Potential
We discuss random matrix models for the spontaneous breaking of both chiral
and color symmetries at zero chemical potential and finite temperature.
Exploring different Lorentz and gauge symmetric color structures of the random
matrix interactions, we find that spontaneous chiral symmetry breaking is
always thermodynamically preferred over diquark condensation. Stable diquark
condensates appear only as SU(2) rotated chiral condensates, which do not
represent an independent thermodynamic phase. Our analysis is based on general
symmetry arguments and hence suggests that no stable and independent diquark
phase can form in QCD with two flavors at zero quark chemical potential.Comment: 26 pages, 1 figure, uses ReVTeX and epsf.st
Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing
The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers
- …