5 research outputs found
Development and interval testing of a naturalistic driving methodology to evaluate driving behavior in clinical research [version 2; referees: 2 approved]
Background: The number of older adults in the United States will double by 2056. Additionally, the number of licensed drivers will increase along with extended driving-life expectancy. Motor vehicle crashes are a leading cause of injury and death in older adults. Alzheimer’s disease (AD) also negatively impacts driving ability and increases crash risk. Conventional methods to evaluate driving ability are limited in predicting decline among older adults. Innovations in GPS hardware and software can monitor driving behavior in the actual environments people drive in. Commercial off-the-shelf (COTS) devices are affordable, easy to install and capture large volumes of data in real-time. However, adapting these methodologies for research can be challenging. This study sought to adapt a COTS device and determine an interval that produced accurate data on the actual route driven for use in future studies involving older adults with and without AD. Methods: Three subjects drove a single course in different vehicles at different intervals (30, 60 and 120 seconds), at different times of day, morning (9:00-11:59AM), afternoon (2:00-5:00PM) and night (7:00-10pm). The nine datasets were examined to determine the optimal collection interval. Results: Compared to the 120-second and 60-second intervals, the 30-second interval was optimal in capturing the actual route driven along with the lowest number of incorrect paths and affordability weighing considerations for data storage and curation. Discussion: Use of COTS devices offers minimal installation efforts, unobtrusive monitoring and discreet data extraction. However, these devices require strict protocols and controlled testing for adoption into research paradigms. After reliability and validity testing, these devices may provide valuable insight into daily driving behaviors and intraindividual change over time for populations of older adults with and without AD. Data can be aggregated over time to look at changes or adverse events and ascertain if decline in performance is occurring
Development and interval testing of a naturalistic driving methodology to evaluate driving behavior in clinical research [version 2; referees: 2 approved]
Background: The number of older adults in the United States will double by 2056. Additionally, the number of licensed drivers will increase along with extended driving-life expectancy. Motor vehicle crashes are a leading cause of injury and death in older adults. Alzheimer’s disease (AD) also negatively impacts driving ability and increases crash risk. Conventional methods to evaluate driving ability are limited in predicting decline among older adults. Innovations in GPS hardware and software can monitor driving behavior in the actual environments people drive in. Commercial off-the-shelf (COTS) devices are affordable, easy to install and capture large volumes of data in real-time. However, adapting these methodologies for research can be challenging. This study sought to adapt a COTS device and determine an interval that produced accurate data on the actual route driven for use in future studies involving older adults with and without AD. Methods: Three subjects drove a single course in different vehicles at different intervals (30, 60 and 120 seconds), at different times of day, morning (9:00-11:59AM), afternoon (2:00-5:00PM) and night (7:00-10pm). The nine datasets were examined to determine the optimal collection interval. Results: Compared to the 120-second and 60-second intervals, the 30-second interval was optimal in capturing the actual route driven along with the lowest number of incorrect paths and affordability weighing considerations for data storage and curation. Discussion: Use of COTS devices offers minimal installation efforts, unobtrusive monitoring and discreet data extraction. However, these devices require strict protocols and controlled testing for adoption into research paradigms. After reliability and validity testing, these devices may provide valuable insight into daily driving behaviors and intraindividual change over time for populations of older adults with and without AD. Data can be aggregated over time to look at changes or adverse events and ascertain if decline in performance is occurring
Tallo: A global tree allometry and crown architecture database
Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle
Tallo: A global tree allometry and crown architecture database.
Funder: Agua Salud ProjectFunder: U.S. Department of Energy; Id: http://dx.doi.org/10.13039/100000015Funder: CAPES; Id: http://dx.doi.org/10.13039/501100002322Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle
Tallo database
The Tallo database (v1.0.0) is a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. Data were compiled from 61,856 globally distributed sites and include measurements for 5,163 tree species. For a full description of the database, see: Jucker et al. (2022) Tallo – a global tree allometry and crown architecture database. Global Change Biology, https://doi.org/10.1111/gcb.16302. If using the Tallo database in your work please cite the original publication listed above, as well as this repository using the corresponding DOI (10.5281/zenodo.6637599)