21 research outputs found

    Global change and mercury cycling: Challenges for implementing a global mercury treaty

    Get PDF
    The Minamata Convention aims to protect human health and the environment from anthropogenic emissions and releases of mercury. In the present study, the provisions of the Minamata Convention are examined to assess their influence on global biogeochemical cycling of Hg. Although the convention's scope covers all major categories of atmospheric emissions, the degree to which it will affect future emissions trajectories remains unclear. A box model analysis shows that future global biogeochemical cycling under projected technological provisions would result mainly in avoided increases and that estimated differences in atmospheric concentrations resulting from policies would be on the order of 1% to 2% per year. Present experience suggests that scientific knowledge is not currently sufficient to attribute causes to changes of this magnitude. Enhancements to capacity to measure the effectiveness of the Minamata Convention are suggested, including both measurement and modeling.National Science Foundation (U.S.) (Atmospheric Chemistry Program Award 1053648

    Explaining trends in tropospheric mercury using global modeling

    Get PDF
    Multiple observational analyses have identified a decreasing trend over the past decade in surface concentrations of gaseous elemental mercury (GEM), from sites in both the Northern and Southern hemisphere. We use two model-based approaches to identify sets of parameters that could quantitatively explain observed trends in mercury. Using a 12-box model, we quantify which combinations of factors including changes in anthropogenic emissions, oceanic and land evasion, and atmospheric oxidation rates that can explain observed tropospheric mercury decreases. We then use the GEOS-Chem chemical transport model to further examine source attribution at measurement sites where decreasing trends have been observed. We combine these analyses to generate quantitative hypotheses to explain observed trends. We suggest that the tropospheric decline may be best explained by multiple, reinforcing factors.National Science Foundation (U.S.) (Atmospheric Chemistry Program Grant 1053648

    Uncertainties in atmospheric mercury modeling for policy evaluation

    Get PDF
    Mercury (Hg) contamination is an issue of a growing environmental and public health concern. Atmospheric chemistry transport models for Hg are a critical tool for understanding the sources, processes, and fate of Hg. Uncertainties in multiple aspects of atmospheric Hg models, however, limit their application for policy evaluation and for monitoring global trends in atmospheric Hg concentrations. This review aims to identify uncertainties in atmospheric Hg modeling that are relevant in the context of policy and for informing decision-making. We focus on specific requirements of the Minamata Convention on Mercury, a global treaty signed in 2013 to protect human health and the environment from Hg, to demonstrate how existing uncertainties in atmospheric Hg modeling can influence our ability to evaluate source-receptor relationships. Modeling studies of source attribution suggest that major uncertainties in atmospheric Hg modeling arise from anthropogenic emissions, biogeochemical cycling, and atmospheric chemistry. Uncertainties in these aspects of modeling are expected to increase under the Convention, with regulation of anthropogenic emissions, changes in atmospheric conditions, and legacy and natural Hg source contribution to the global biogeochemical cycle. These uncertainties can interact with one another and with the current Hg species measurement capability and pose challenges to effectively monitoring trends in atmospheric Hg. Developing additional means to attribute simulated atmospheric Hg trends and improve source-receptor relationships in atmospheric Hg models would improve our ability to evaluate the Convention's effectiveness.117sciescopu

    The Earth as an Engineering System: Addressing Sustainability through Science, Technology and Policy

    Get PDF
    We combine insights from the two emerging fields of engineering systems and sustainability science to develop an analytical approach for understanding and managing coupled natural and human systems. The Earth system is characterized with reference to the attributes of engineering systems (real-world existence, artificiality, dynamic properties, hybrid state, and some human control). We argue that human influences have become so overwhelming that it is impossible to understand global Earth systems without taking into account both technical and social dimensions. Aspects of sustainability systems that fulfill functional types of engineering systems are enumerated with reference to five processes (transporting, transforming, storing, exchanging and controlling) and operands (living organisms, matter, information, energy and money). Building on methods from sustainability science, we introduce the concept of Spatial-Temporal-Functional (STF) analysis for addressing sustainability problems in an engineering systems context. We illustrate this framework with reference to the case of global transport of hazardous chemicals. Our analysis suggests that efforts to address cross-scale problems should focus on enhancing mechanisms for transforming and exchanging in addition to controlling

    Air quality resolution for health impact assessment: influence of regional characteristics

    Get PDF
    We evaluate how regional characteristics of population and background pollution might impact the selection of optimal air quality model resolution when calculating the human health impacts of changes to air quality. Using an approach consistent with air quality policy evaluation, we use a regional chemical transport model (CAMx) and a health benefit mapping program (BenMAP) to calculate the human health impacts associated with changes in ozone and fine particulate matter resulting from an emission reduction scenario. We evaluate this same scenario at 36, 12 and 4 km resolution for nine regions in the eastern US representing varied characteristics. We find that the human health benefits associated with changes in ozone concentrations are sensitive to resolution. This finding is especially strong in urban areas where we estimate that benefits calculated using coarse resolution results are on average two times greater than benefits calculated using finer scale results. In three urban areas we analyzed, results calculated using 36 km resolution modeling fell outside the uncertainty range of results calculated using finer scale modeling. In rural areas the influence of resolution is less pronounced with only an 8% increase in the estimated health impacts when using 36 km resolution over finer scales. In contrast, health benefits associated with changes in PM[subscript 2.5] concentrations were not sensitive to resolution and did not follow a pattern based on any regional characteristics evaluated. The largest difference between the health impacts estimated using 36 km modeling results and either 12 or 4 km results was at most ±10% in any region. Several regions showed increases in estimated benefits as resolution increased (opposite the impact seen with ozone modeling), while some regions showed decreases in estimated benefits as resolution increased. In both cases, the dominant contribution was from secondary PM. Additionally, we found that the health impacts calculated using several individual concentration–response functions varied by a larger amount than the impacts calculated using results modeled at different resolutions. Given that changes in PM[subscript 2.5] dominate the human health impacts, and given the uncertainty associated with human health response to changes in air pollution, we conclude that, when estimating the human health benefits associated with decreases in ozone and PM[subscript 2.5] together, the benefits calculated at 36 km resolution agree, within errors, with the benefits calculated using fine (12 km or finer) resolution modeling when using the current methodology for assessing policy decisions.United States. Environmental Protection Agency. Science to Achieve Results Program (Grant R834279)MIT Energy Initiative (Total Energy Fellowship)United States. Dept. of Energy. Office of Science (Grant DE-FG02-94ER61937)Massachusetts Institute of Technology. Joint Program on the Science & Policy of Global Chang

    Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions

    Get PDF
    The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, thereby enriching the spectrum of multi-pollutant sources in the database. With an average annual growth rate of 1.3% since 1970, EDGARv4 estimates that the global mercury emissions reached 1287 tonnes in 2008. Specifically, gaseous elemental mercury (GEM) (Hg[superscript 0]) accounted for 72% of the global total emissions, while gaseous oxidised mercury (GOM) (Hg[superscript 2 +]) and particle bound mercury (PBM) (Hg-P) accounted for only 22% and 6%, respectively. The less reactive form, i.e., Hg[superscript 0], has a long atmospheric residence time and can be transported long distances from the emission sources. The artisanal and small-scale gold production, accounted for approximately half of the global Hg[superscript 0] emissions in 2008 followed by combustion (29%), cement production (12%) and other metal industry (10%). Given the local-scale impacts of mercury, special attention was given to the spatial distribution showing the emission hot-spots on gridded 0.1° × 0.1° resolution maps using detailed proxy data. The comprehensive ex-post analysis of the mitigation of mercury emissions by end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry over four decades indicates reductions of 46% and 93%, respectively. Combined, the improved technologies and mitigation measures in these sectors accounted for 401.7 tonnes of avoided mercury emissions in 2008. A comparison shows that EDGARv4 anthropogenic emissions are nearly equivalent to the lower estimates of the United Nations Environment Programme (UNEP)'s mercury emissions inventory for 2005 for most sectors. An evaluation of the EDGARv4 global mercury emission inventory, including mercury speciation, was performed using the GEOS-Chem global 3-D mercury model. The model can generally reproduce both spatial variations and long-term trends in total gaseous mercury concentrations and wet deposition fluxes.National Science Foundation (U.S.) (Atmospheric Chemistry Program Grant 1053648

    Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling

    Get PDF
    We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg[superscript 0] observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg[superscript 0] and wet deposition measurements. The optimized global mercury emission to the atmosphere is ~ 5.8 Gg yr[superscript −1]. The ocean accounts for 3.2 Gg yr[superscript −1] (55% of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg[superscript 0]. The optimized Asian anthropogenic emission of Hg[superscript 0] (gas elemental mercury) is 650–1770 Mg yr[superscript −1], higher than its bottom-up estimates (550–800 Mg yr[superscript −1]). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition.National Science Foundation (U.S.). Atmospheric Chemistry Program (1053648

    Science, Politics, and Persistent Organic Pollutants: The Role of Scientific Assessments in International Environmental Co-operation

    No full text
    assessment, chemicals, international environmental agreements, persistent organic pollutants, policy, science,

    PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    No full text
    We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB) model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that midlatitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.National Science Foundation (U.S.). Arctic Natural Sciences Program (1203526)National Science Foundation (U.S.). Dynamics of Coupled Natural Human Systems Program (1313755)National Science Foundation (U.S.). Atmospheric Chemistry Program (1053648)National Institutes of Health (U.S.) (Training Grant T32-ES007-020

    Climate Change and Emissions Impacts on Atmospheric PAH Transport to the Arctic

    No full text
    We investigate effects of 2000–2050 emissions and climate changes on the atmospheric transport of three polycyclic aromatic hydrocarbons (PAHs): phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP). We use the GEOS-Chem model coupled to meteorology from a general circulation model and focus on impacts to northern hemisphere midlatitudes and the Arctic. We project declines in anthropogenic emissions (up to 20%) and concentrations (up to 37%), with particle-bound PAHs declining more, and greater declines in midlatitudes versus the Arctic. Climate change causes relatively minor increases in midlatitude concentrations for the more volatile PHE and PYR (up to 4%) and decreases (3%) for particle-bound BaP. In the Arctic, all PAHs decline slightly under future climate (up to 2%). Overall, we observe a small 2050 “climate penalty” for volatile PAHs and “climate benefit” for particle-bound PAHs. The degree of penalty or benefit depends on competition between deposition and surface-to-air fluxes of previously deposited PAHs. Particles and temperature have greater impacts on future transport than oxidants, with particle changes alone accounting for 15% of BaP decline under 2050 emissions. Higher temperatures drive increasing surface-to-air fluxes that cause PHE and PYR climate penalties. Simulations suggest ratios of more-to-less volatile species can be used to diagnose signals of climate versus emissions and that these signals are best observed in the Arctic.National Science Foundation (U.S.). Atmospheric Chemistry Program (Grant 1053658)National Science Foundation (U.S.). Arctic Natural Sciences Program (Grant 1203526)National Science Foundation (U.S.). Dynamics of Coupled Natural and Human Systems Program (Grant 1313755)Massachusetts Institute of Technology. Technology and Policy Program (Leading Technology and Policy Initiative
    corecore