4 research outputs found

    Spanning Trees in Random Satisfiability Problems

    Full text link
    Working with tree graphs is always easier than with loopy ones and spanning trees are the closest tree-like structures to a given graph. We find a correspondence between the solutions of random K-satisfiability problem and those of spanning trees in the associated factor graph. We introduce a modified survey propagation algorithm which returns null edges of the factor graph and helps us to find satisfiable spanning trees. This allows us to study organization of satisfiable spanning trees in the space spanned by spanning trees.Comment: 12 pages, 5 figures, published versio

    Solution to Satisfiability problem by a complete Grover search with trapped ions

    Full text link
    The main idea in the original Grover search (Phys. Rev. Lett. 79, 325 (1997)) is to single out a target state containing the solution to a search problem by amplifying the amplitude of the state, following the Oracle's job, i.e., a black box giving us information about the target state. We design quantum circuits to accomplish a complete Grover search involving both the Oracle's job and the amplification of the target state, which are employed to solve Satisfiability (SAT) problems. We explore how to carry out the quantum circuits by currently available ion-trap quantum computing technology.Comment: 14 pages, 6 figure

    Focused Local Search for Random 3-Satisfiability

    Full text link
    A local search algorithm solving an NP-complete optimisation problem can be viewed as a stochastic process moving in an 'energy landscape' towards eventually finding an optimal solution. For the random 3-satisfiability problem, the heuristic of focusing the local moves on the presently unsatisfiedclauses is known to be very effective: the time to solution has been observed to grow only linearly in the number of variables, for a given clauses-to-variables ratio α\alpha sufficiently far below the critical satisfiability threshold αc≈4.27\alpha_c \approx 4.27. We present numerical results on the behaviour of three focused local search algorithms for this problem, considering in particular the characteristics of a focused variant of the simple Metropolis dynamics. We estimate the optimal value for the ``temperature'' parameter η\eta for this algorithm, such that its linear-time regime extends as close to αc\alpha_c as possible. Similar parameter optimisation is performed also for the well-known WalkSAT algorithm and for the less studied, but very well performing Focused Record-to-Record Travel method. We observe that with an appropriate choice of parameters, the linear time regime for each of these algorithms seems to extend well into ratios α>4.2\alpha > 4.2 -- much further than has so far been generally assumed. We discuss the statistics of solution times for the algorithms, relate their performance to the process of ``whitening'', and present some conjectures on the shape of their computational phase diagrams.Comment: 20 pages, lots of figure

    Clusters of solutions and replica symmetry breaking in random k-satisfiability

    Full text link
    We study the set of solutions of random k-satisfiability formulae through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substantially this picture by: (i) determining the precise location of the clustering transition; (ii) uncovering a second `condensation' phase transition in the structure of the solution set for k larger or equal than 4. These results both follow from computing the large deviation rate of the internal entropy of pure states. From a technical point of view our main contributions are a simplified version of the cavity formalism for special values of the Parisi replica symmetry breaking parameter m (in particular for m=1 via a correspondence with the tree reconstruction problem) and new large-k expansions.Comment: 30 pages, 14 figures, typos corrected, discussion of appendix C expanded with a new figur
    corecore