568 research outputs found

    Deformable GANs for Pose-based Human Image Generation

    Get PDF
    In this paper we address the problem of generating person images conditioned on a given pose. Specifically, given an image of a person and a target pose, we synthesize a new image of that person in the novel pose. In order to deal with pixel-to-pixel misalignments caused by the pose differences, we introduce deformable skip connections in the generator of our Generative Adversarial Network. Moreover, a nearest-neighbour loss is proposed instead of the common L1 and L2 losses in order to match the details of the generated image with the target image. We test our approach using photos of persons in different poses and we compare our method with previous work in this area showing state-of-the-art results in two benchmarks. Our method can be applied to the wider field of deformable object generation, provided that the pose of the articulated object can be extracted using a keypoint detector.Comment: CVPR 2018 versio

    Regularized Evolutionary Algorithm for Dynamic Neural Topology Search

    Full text link
    Designing neural networks for object recognition requires considerable architecture engineering. As a remedy, neuro-evolutionary network architecture search, which automatically searches for optimal network architectures using evolutionary algorithms, has recently become very popular. Although very effective, evolutionary algorithms rely heavily on having a large population of individuals (i.e., network architectures) and is therefore memory expensive. In this work, we propose a Regularized Evolutionary Algorithm with low memory footprint to evolve a dynamic image classifier. In details, we introduce novel custom operators that regularize the evolutionary process of a micro-population of 10 individuals. We conduct experiments on three different digits datasets (MNIST, USPS, SVHN) and show that our evolutionary method obtains competitive results with the current state-of-the-art

    Self Paced Deep Learning for Weakly Supervised Object Detection

    Full text link
    In a weakly-supervised scenario object detectors need to be trained using image-level annotation alone. Since bounding-box-level ground truth is not available, most of the solutions proposed so far are based on an iterative, Multiple Instance Learning framework in which the current classifier is used to select the highest-confidence boxes in each image, which are treated as pseudo-ground truth in the next training iteration. However, the errors of an immature classifier can make the process drift, usually introducing many of false positives in the training dataset. To alleviate this problem, we propose in this paper a training protocol based on the self-paced learning paradigm. The main idea is to iteratively select a subset of images and boxes that are the most reliable, and use them for training. While in the past few years similar strategies have been adopted for SVMs and other classifiers, we are the first showing that a self-paced approach can be used with deep-network-based classifiers in an end-to-end training pipeline. The method we propose is built on the fully-supervised Fast-RCNN architecture and can be applied to similar architectures which represent the input image as a bag of boxes. We show state-of-the-art results on Pascal VOC 2007, Pascal VOC 2010 and ILSVRC 2013. On ILSVRC 2013 our results based on a low-capacity AlexNet network outperform even those weakly-supervised approaches which are based on much higher-capacity networks.Comment: To appear at IEEE Transactions on PAM
    • …
    corecore