68 research outputs found
Spitzer observations of extragalactic H II regions - III. NGC 6822 and the hot star, H II region connection
Using the short-high module of the Infrared Spectrograph on the Spitzer Space
Telescope, we have measured the [S IV] 10.51, [Ne II] 12.81, [Ne III] 15.56,
and [S III] 18.71-micron emission lines in nine H II regions in the dwarf
irregular galaxy NGC 6822. These lines arise from the dominant ionization
states of the elements neon (Ne, Ne) and sulphur (S,
S), thereby allowing an analysis of the neon to sulphur abundance ratio
as well as the ionic abundance ratios Ne/Ne and S/S.
By extending our studies of H II regions in M83 and M33 to the lower
metallicity NGC 6822, we increase the reliability of the estimated Ne/S ratio.
We find that the Ne/S ratio appears to be fairly universal, with not much
variation about the ratio found for NGC 6822: the median (average) Ne/S ratio
equals 11.6 (12.20.8). This value is in contrast to Asplund et al.'s
currently best estimated value for the Sun: Ne/S = 6.5. In addition, we
continue to test the predicted ionizing spectral energy distributions (SEDs)
from various stellar atmosphere models by comparing model nebulae computed with
these SEDs as inputs to our observational data, changing just the stellar
atmosphere model abundances. Here we employ a new grid of SEDs computed with
different metallicities: Solar, 0.4 Solar, and 0.1 Solar. As expected, these
changes to the SED show similar trends to those seen upon changing just the
nebular gas metallicities in our plasma simulations: lower metallicity results
in higher ionization. This trend agrees with the observations.Comment: 22 pages, 13 figures. To be published in MNRAS. reference added and
typos fixed. arXiv admin note: text overlap with arXiv:0804.0828, which is
paper II by Rubin et al. (2008
Far-Infrared Hydrogen Lasers in the Peculiar Star MWC 349A
Far-infrared hydrogen recombination lines H15(alpha)(169.4 micrometers), H12(alpha)(88.8 micrometers), and H10(alpha)(52.5 micrometers) were detected in the peculiar luminous star MWC 349A from the Kuiper Airborne Observatory. Here it is shown that at least H15(alpha) is strongly amplified, with the probable amplification factor being greater than or about equal to 10(exp 3) and a brightness temperature that is greater than or about equal to 10(exp 7) kelvin. The other two lines also show signs of amplification, although to a lesser degree. Beyond H10(alpha) the amplification apparently vanishes. The newly detected amplified lines fall into the laser wavelength domain. These lasers, as well as the previously detected hydrogen masers may originate in the photoionized circumstellar disk of MWC 349A and constrain the disk's physics and structure
Antiadhesive Role of Apical Decay-accelerating Factor (CD55) in Human Neutrophil Transmigration across Mucosal Epithelia
Neutrophil migration across mucosal epithelium during inflammatory episodes involves the precise orchestration of a number a cell surface molecules and signaling pathways. After successful migration to the apical epithelial surface, apically localized epithelial proteins may serve to retain PMN at the lumenal surface. At present, identification of apical epithelial ligands and their PMN counter-receptors remain elusive. Therefore, to define the existence of apical epithelial cell surface proteins involved in PMN–epithelial interactions, we screened a panel of antibodies directed against epithelial plasma membranes. This strategy identified one antibody (OE-1) that both localized to the apical cell membrane and significantly inhibited PMN transmigration across epithelial monolayers. Microsequence analysis revealed that OE-1 recognized human decay-accelerating factor (DAF, CD55). DAF is a highly glycosylated, 70–80-kD, glycosyl-phosphatidyinositol–linked protein that functions predominantly as an inhibitor of autologous complement lysis. DAF suppression experiments using antisense oligonucleotides or RNA interference revealed that DAF may function as an antiadhesive molecule promoting the release of PMN from the lumenal surface after transmigration. Similarly, peptides corresponding to the antigen recognition domain of OE-1 resulted in accumulation of PMN on the apical epithelial surface. The elucidation of DAF as an apical epithelial ligand for PMN provides a target for novel anti-inflammatory therapies directed at quelling unwanted inflammatory episodes
The First Mid-infrared Detection of HNC in the Interstellar Medium: Probing the Extreme Environment toward the Orion Hot Core
We present the first mid-infrared (MIR) detections of HNC and H13CN in the interstellar medium, and numerous, resolved HCN rovibrational transitions. Our observations span 12.8 to 22.9 micron towards the hot core Orion IRc2, obtained with the Echelon-Cross-Echelle Spectrograph aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Exceptional, ~5 km/s, resolution distinguishes individual rovibrational transitions of the HNC and HCN P, Q, and R branches; and the H13CN R branch. This allows direct measurement of the species' excitation temperatures, column densities, and relative abundances. HNC and H13CN exhibit a local standard rest velocity of -7 km/s that may be associated with an outflow from nearby radio source I and an excitation temperature of about 100 K. We resolve two velocity components for HCN, the primary component also being at -7 km/s with temperature 165 K. The hottest component, which had never before been observed, is at 1 km/s with temperature 309 K. This is the closest component to the hot core's centre measured to date. The derived 12C/13C=13 is below expectation for Orion's Galactocentric distance, but the derived HCN/HNC=72 is expected for this extreme environment. Compared to previous sub-mm and mm observations, our SOFIA line survey of this region shows that the resolved MIR molecular transitions are probing a distinct physical component and isolating the chemistry closest to the hot core
HST NICMOS Observations of the Polarization of NGC 1068
We have observed the polarized light at 2 micron in the center of NGC 1068
with HST NICMOS Camera 2. The nucleus is dominated by a bright, unresolved
source, polarized at a level of 6.0 pm 1.2% with a position angle of 122degr pm
1.5degr. There are two polarized lobes extending up to 8'' northeast and
southwest of the nucleus. The polarized flux in both lobes is quite clumpy,
with the maximum polarization occurring in the southwest lobe at a level of 17%
when smoothed to 0.23'' resolution. The perpendiculars to the polarization
vectors in these two lobes point back to the intense unresolved nuclear source
to within one 0.076'' Camera 2 pixel, thereby confirming that this is the
illuminating source of the scattered light and therefore the probable AGN
central engine. Whereas the polarization of the nucleus is probably caused by
dichroic absorption, the polarization in the lobes is almost certainly caused
by scattering, with very little contribution from dichroic absorption. Features
in the polarized lobes include a gap at a distance of about 1'' from the
nucleus toward the southwest lobe and a ``knot'' of emission about 5''
northeast of the nucleus. Both features had been discussed by ground-based
observers, but they are much better defined with the high spatial resolution of
NICMOS. The northeast knot may be the side of a molecular cloud that is facing
the nucleus, which cloud may be preventing the expansion of the northeast radio
lobe at the head of the radio synchrotron-radiation-emitting jet. We also
report the presence of two ghosts in the Camera 2 polarizers. These had not
been detected previously (Hines et al. 2000) because they are relatively faint
and require observations of a source with a large dynamic range.Comment: 17 pages, 4 figure
\u3cem\u3eSpitzer\u3c/em\u3e Reveals what is Behind Orion\u27s Bar
We present Spitzer Space Telescope observations of 11 regions south-east (SE) of the Bright Bar in the Orion Nebula, along a radial from the exciting star θ1 Ori C, extending from 2.6 to 12.1 arcmin. Our Cycle 5 programme obtained deep spectra with matching Infrared Spectrograph (IRS) short-high (SH) and long-high (LH) aperture grid patterns. Most previous IR missions observed only the inner few arcmin (the ‘Huygens’ Region). The extreme sensitivity of Spitzer in the 10–37 μm spectral range permitted us to measure many lines of interest to much larger distances from θ1 Ori C. Orion is the benchmark for studies of the interstellar medium, particularly for elemental abundances. Spitzer observations provide a unique perspective on the neon and sulphur abundances by virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3 +) in Orion and H II regions in general. The Ne/H abundance ratio is especially well determined, with a value of (1.02 ± 0.02) × 10−4 or in terms of the conventional expression, 12 + log(Ne/H) = 8.01 ± 0.01. We obtained corresponding new ground-based spectra at Cerro Tololo Inter-American Observatory (CTIO). These optical data are used to estimate the electron temperature, electron density, optical extinction and the S+/S++ ionization ratio at each of our Spitzer positions. That permits an adjustment for the total gas-phase sulphur abundance because no S+ line is observed by Spitzer. The gas-phase S/H abundance ratio is (7.68 ± 0.25) × 10−6 or 12 + log(S/H) = 6.89 ± 0.02. The Ne/S abundance ratio may be determined even when the weaker hydrogen line, H(7–6) here, is not measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S =13.0 ± 0.2. We derive the electron density (Ne) versus distance from θ1 Ori C for [S III] (Spitzer) and [S II] (CTIO). Both distributions are for the most part decreasing with increasing distance. The values for Ne[S II] fall below those of Ne[S III] at a given distance except for the outermost position. This general trend is consistent with the commonly accepted blister model for the Orion Nebula. The natural shape of such a blister is concave with an underlying decrease in density with increasing distance from the source of photoionization. Our spectra are the deepest ever taken in these outer regions of Orion over the 10–37 μm range. Tracking the changes in ionization structure via the line emission to larger distances provides much more leverage for understanding the far less studied outer regions. A dramatic find is the presence of high-ionization Ne++ all the way to the outer optical boundary ∼12 arcmin from θ1 Ori C. This IR result is robust, whereas the optical evidence from observations of high-ionization species (e.g. O++) at the outer optical boundary suffers uncertainty because of scattering of emission from the much brighter inner Huygens Region. The Spitzerspectra are consistent with the Bright Bar being a high-density ‘localized escarpment’ in the larger Orion Nebula picture. Hard ionizing photons reach most solid angles well SE of the Bright Bar. The so-called Orion foreground ‘Veil’, seen prominently in projection at our outermost position 12 arcmin from θ1 Ori C, is likely an H II region–photo-dissociation region (PDR) interface. The Spitzer spectra show very strong enhancements of PDR lines –[Si II] 34.8 μm, [Fe II] 26.0 μm and molecular hydrogen – at the outermost position
- …