10 research outputs found

    Supplementary Data 1. Raw experimental gait data for all African elephants from Foot pressure distributions during walking in African elephants (<i>Loxodonta africana</i>)

    No full text
    Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples

    Experimental setup.

    No full text
    <p>The microphone array with 48 channels was connected to the recorder and a Laptop, and placed around 8 meters from the focal elephant.</p

    Supplementary Data 3. Raw experimental foot pressure data for all Asian elephants (excluding subject 1) by Panagiotopoulou et al., 2012 from Foot pressure distributions during walking in African elephants (<i>Loxodonta africana</i>)

    No full text
    Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples

    Supplementary Data 4. Raw experimental COP data for all African elephants from Foot pressure distributions during walking in African elephants (<i>Loxodonta africana</i>)

    No full text
    Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples

    Spectral characteristics of nasal and oral rumbles.

    No full text
    <p>Spectrograms and power spectra showing an example of a nasal (A, B) and an oral (C, D) rumble, indicating formant positions (both rumbles uttered by Nuanedi, 10-year-old female).</p

    Supplementary Data 5 from Foot pressure distributions during walking in African elephants (<i>Loxodonta africana</i>)

    No full text
    Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples

    Supplementary Data 2. Raw experimental foot pressure data for all African elephants from Foot pressure distributions during walking in African elephants (<i>Loxodonta africana</i>)

    No full text
    Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples

    Sound visualization of African elephant rumbling vocalizations.

    No full text
    <p>Examples of nasal and oral rumbling vocalizations from three female elephants, Messina, Nuanedi and Shan. Figures A, C and E give examples of nasal rumbles, B, D and F give examples of oral rumbles.</p

    Results of the acoustic analysis.

    No full text
    <p>The age and the sex of each recorded individual, the number of orally and nasally emitted rumbles (and the percentage of those recorded in each context, respectively), and the mean duration, mean fundamental frequency, mean formant frequency values 1 and 2, and mean sound pressure level (SPL) ± SD of rumbles per individual are presented. The estimated vocal tract length (VTL) for each individual based on the spacing in Hz between formants 1 and 2 for nasal and oral rumbles is also given.</p

    Automatic classification of rumbling vocalizations.

    No full text
    <p>Numerical descriptors (averaged LPC spectrum) for all sound samples in the experiments. Each column of the matrix represents one descriptor of a rumble. Red represents spectral peaks while blue represents low spectral components. The descriptors of the nasal and oral rumbles show significantly different characteristics.</p
    corecore