2,952 research outputs found
From EIT photon correlations to Raman anti-correlations in coherently prepared Rb vapor
We have experimentally observed switching between photon-photon correlations
(bunching) and anti-correlations (anti-bunching) between two orthogonally
polarized laser beams in an EIT configuration in Rb vapor. The bunching and
anti-bunching sswitching occurs at a specific magnetic field strength.Comment: 4 pages and 3 figure
Cooling a quantum circuit via coupling to a multiqubit system
The cooling effects of a quantum LC circuit coupled inductively with an
ensemble of artificial qubits are investigated. The particles may decay
independently or collectively through their interaction with the environmental
vacuum electromagnetic field reservoir. For appropriate bath temperatures and
the resonator's quality factors, we demonstrate an effective cooling well below
the thermal background. In particular, we found that for larger samples the
cooling efficiency is better for independent qubits. However, the cooling
process can be faster for collectively interacting particles.Comment: 5 pages, 3 figure
Fluorescence interferometry
We describe an interferometer based on fluorescent emission of radiation of
two qubits in quasi-one-dimensional modes. Such a system can be readily
realized with dipole emitters near conducting surface-plasmonic nanowires or
with superconducting qubits coupled to coplanar waveguide transmission lines.Comment: 7 pages, 2 figure
On mechanisms that enforce complementarity
In a recent publication Luis and Sanchez-Soto arrive at the conclusion that
complementarity is universally enforced by random classical phase kicks. We
disagree. One could just as well argue that quantum entanglement is the
universal mechanism. Both claims of universality are unjustified, however.Comment: 4 page
Generation of two-mode field squeezing through selective dynamics in cavity QED
We propose a scheme for the generation of a two-mode field squeezed state in
cavity QED. It is based on two-channel Raman excitations of a beam of
three-level atoms with random arrival times by two classical fields and two
high-Q resonator modes. It is shown that by suitably choosing the intensities
and detunings of fields the dynamical processes can be selective and two-mode
squeezing between the cavity modes can be generated at steady state. This
proposal does not need the preparation of the initial states of atoms and
cavity modes, and is robust against atomic spontaneous decay.Comment: 4 pages,2 figure
Quantum limit of optical magnetometry in the presence of ac-Stark shifts
We analyze systematic (classical) and fundamental (quantum) limitations of
the sensitivity of optical magnetometers resulting from ac-Stark shifts. We
show that in contrast to absorption-based techniques, the signal reduction
associated with classical broadening can be compensated in magnetometers based
on phase measurements using electromagnetically induced transparency (EIT).
However due to ac-Stark associated quantum noise the signal-to-noise ratio of
EIT-based magnetometers attains a maximum value at a certain laser intensity.
This value is independent on the quantum statistics of the light and defines a
standard quantum limit of sensitivity. We demonstrate that an EIT-based optical
magnetometer in Faraday configuration is the best candidate to achieve the
highest sensitivity of magnetic field detection and give a detailed analysis of
such a device.Comment: 11 pages, 4 figure
Preventing Multipartite Disentanglement by Local Modulations
An entangled multipartite system coupled to a zero-temperature bath undergoes
rapid disentanglement in many realistic scenarios, due to local,
symmetry-breaking, differences in the particle-bath couplings. We show that
locally controlled perturbations, addressing each particle individually, can
impose a symmetry, and thus allow the existence of decoherence-free
multipartite entangled systems in zero-temperature environments.Comment: 5 pages, 2 figure
Distillation of Bell states in open systems
In this work we review the entire classification of 2x2 distillable states
for protocols with a finite numbers of copies. We show a distillation protocol
that allows to distill Bell states with non zero probability at any time for an
initial singlet in vacuum. It is shown that the same protocol used in non zero
thermal baths yields a considerable recovering of entanglement.Comment: 10 pages, 3 figure
- …