20 research outputs found

    EVA Physiology and Medical Considerations Working in the Suit

    Get PDF
    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers

    TPS Inspection and Repair

    Get PDF
    Dr. Scott Parazynski provided a retrospective on the EVA tools and procedures efforts NASA went through in the aftermath of Columbia for the Shuttle Thermal Protection System (TPS) inspection and repair. He describes his role as the lead astronaut on this effort, and covered all of the Neutral Buoyancy Lab (NBL), KC 135 (reduced gravity aircraft), Precision Air Bearing Floor (PABF), vacuum chamber and 1 G testing that was done in order to develop the tools and techniques that were flown. Parazynski also discusses how the EVA community worked together to resolve a huge safety issue, and how his work in the spacesuit was critical to overcoming a design limitation of the Space Shuttle

    Muscle changes with eccentric exercise: Implications on earth and in space

    Get PDF
    Recent investigations of fluid pressure, morpholo gy, and enzyme activities of skeletal muscle exercised eccentrically or concentrically in normal human subjects are reviewed. Intramuscular pressures were measured before, during, and after submaximal exercise and correlated with subjective muscle soreness, fiber size, water content, and blood indices of muscle enzymes. High intensity eccentric exercise is characterized by post exercise pain, elevated intramuscular pressures, and swelling of both type 1 and 2 fibers as compared to concentric exercise. Thus, long periods of unaccustomed, high level eccentric contraction may cause muscle injury, fiber swelling, fluid accumulation, elevated intramuscular pressure, and delayed muscle soreness. Training regimens of progressively increasing eccentric exercise, however, cause less soreness and are extremely efficacious in increasing muscle mass and strength. It is proposed that on Earth, postural muscles are uniquely adapted to low levels of prolonged eccentric contraction that are absent during weightlessness. The almost complete absence of eccentric exercise in space may be an important contributor to muscle atrophy and therefore equipment should be designed to integrate eccentric contractions into exercise protocols for long-term spaceflight

    EVA Skills Training

    Get PDF
    Dr. Parazynski and a colleague from Extravehicular Activity (EVA), Robotics, & Crew Systems Operations (DX) worked closely to build the EVA Skills Training Program, and for the first time, defined the gold standards of EVA performance, allowing crewmembers to increase their performance significantly. As part of the program, individuals had the opportunity to learn at their own rate, taking additional water time as required, to achieve that level of performance. This focus on training to one's strengths and weaknesses to bolster them enabled the Crew Office and DX to field a much larger group of spacewalkers for the daunting "wall of EVA" required for the building and maintenance of the ISS. Parazynski also stressed the need for designers to understand the capabilities and the limitations of a human in a spacesuit, as well as opportunities to improve future generations of space. He shared lessons learned (how the Crew Office engaged in these endeavors) and illustrated the need to work as a team to develop these complex systems

    Osteoporosis in Microgravity Environments

    Get PDF

    Development of Sub-optimal Airway Protocols for the International Space Station (ISS) by the Medical Operation Support Team (MOST)

    Get PDF
    Airway management techniques are necessary to establish and maintain a patent airway while treating a patient undergoing respiratory distress. There are situations where such settings are suboptimal, thus causing the caregiver to adapt to these suboptimal conditions. Such occurrences are no exception aboard the International Space Station (ISS). As a result, the NASA flight surgeon (FS) and NASA astronaut cohorts must be ready to adapt their optimal airway management techniques for suboptimal situations. Based on previous work conducted by the Medical Operation Support Team (MOST) and other investigators, the MOST had members of both the FS and astronaut cohorts evaluate two oral airway insertion techniques for the Intubating Laryngeal Mask Airway (ILMA) to determine whether either technique is sufficient to perform in suboptimal conditions within a microgravity environment. Methods All experiments were conducted in a simulated microgravity environment provided by parabolic flight aboard DC-9 aircraft. Each participant acted as a caregiver and was directed to attempt both suboptimal ILMA insertion techniques following a preflight instruction session on the day of the flight and a demonstration of the technique by an anesthesiologist physician in the simulated microgravity environment aboard the aircraft. Results Fourteen participants conducted 46 trials of the suboptimal ILMA insertion techniques. Overall, 43 of 46 trials (94%) conducted were properly performed based on criteria developed by the MOST and other investigators. Discussion The study demonstrated the use of airway management techniques in suboptimal conditions relating to space flight. Use of these techniques will provide a crew with options for using the ILMA to manage airway issues aboard the ISS. Although it is understood that the optimal method for patient care during space flight is to have both patient and caregiver restrained, these techniques provide a needed backup should conditions not present themselves in an ideal manner

    Apparatus and Methods for Fluid Storage and Delivery

    Get PDF
    An apparatus and method for storing and delivering fluid to a person comprises, in at least one specific embodiment, a fluid reservoir having an internal volume therein with an opening disposed through a first wall or a second wall of the fluid reservoir and located toward a first end of the fluid reservoir. A first portion of a tube can be exterior to the fluid reservoir and a second portion of the tube can be disposed through the opening and within the internal volume. At least one insulation layer can be disposed about the exterior of the first wall of the fluid reservoir. The second wall of the fluid reservoir can be configured for transferring heat from or to the internal volume or from the person. At least one baffle is disposed within the internal volume and connected to the first wall and the second wall of the fluid reservoir

    EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    Get PDF
    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated

    Science and technology requirements to explore caves in our Solar System

    Get PDF
    Research on planetary caves requires cross-planetary-body investigations spanning multiple disciplines, including geology, climatology, astrobiology, robotics, human exploration and operations. The community determined that a roadmap was needed to establish a common framework for planetary cave research. This white paper is our initial conception

    Severe traumatic injury during long duration spaceflight: Light years beyond ATLS

    Get PDF
    Traumatic injury strikes unexpectedly among the healthiest members of the human population, and has been an inevitable companion of exploration throughout history. In space flight beyond the Earth's orbit, NASA considers trauma to be the highest level of concern regarding the probable incidence versus impact on mission and health. Because of limited resources, medical care will have to focus on the conditions most likely to occur, as well as those with the most significant impact on the crew and mission. Although the relative risk of disabling injuries is significantly higher than traumatic deaths on earth, either issue would have catastrophic implications during space flight. As a result this review focuses on serious life-threatening injuries during space flight as determined by a NASA consensus conference attended by experts in all aspects of injury and space flight
    corecore