82 research outputs found

    Learn Quantum Mechanics with Haskell

    Full text link
    To learn quantum mechanics, one must become adept in the use of various mathematical structures that make up the theory; one must also become familiar with some basic laboratory experiments that the theory is designed to explain. The laboratory ideas are naturally expressed in one language, and the theoretical ideas in another. We present a method for learning quantum mechanics that begins with a laboratory language for the description and simulation of simple but essential laboratory experiments, so that students can gain some intuition about the phenomena that a theory of quantum mechanics needs to explain. Then, in parallel with the introduction of the mathematical framework on which quantum mechanics is based, we introduce a calculational language for describing important mathematical objects and operations, allowing students to do calculations in quantum mechanics, including calculations that cannot be done by hand. Finally, we ask students to use the calculational language to implement a simplified version of the laboratory language, bringing together the theoretical and laboratory ideas.Comment: In Proceedings TFPIE 2015/6, arXiv:1611.0865

    Learn Physics by Programming in Haskell

    Full text link
    We describe a method for deepening a student's understanding of basic physics by asking the student to express physical ideas in a functional programming language. The method is implemented in a second-year course in computational physics at Lebanon Valley College. We argue that the structure of Newtonian mechanics is clarified by its expression in a language (Haskell) that supports higher-order functions, types, and type classes. In electromagnetic theory, the type signatures of functions that calculate electric and magnetic fields clearly express the functional dependency on the charge and current distributions that produce the fields. Many of the ideas in basic physics are well-captured by a type or a function.Comment: In Proceedings TFPIE 2014, arXiv:1412.473

    Werner state structure and entanglement classification

    Full text link
    We present applications of the representation theory of Lie groups to the analysis of structure and local unitary classification of Werner states, sometimes called the {\em decoherence-free} states, which are states of nn quantum bits left unchanged by local transformations that are the same on each particle. We introduce a multiqubit generalization of the singlet state, and a construction that assembles these into Werner states.Comment: 9 pages, 2 figures, minor changes and corrections for version

    Maximum stabilizer dimension for nonproduct states

    Full text link
    Composite quantum states can be classified by how they behave under local unitary transformations. Each quantum state has a stabilizer subgroup and a corresponding Lie algebra, the structure of which is a local unitary invariant. In this paper, we study the structure of the stabilizer subalgebra for n-qubit pure states, and find its maximum dimension to be n-1 for nonproduct states of three qubits and higher. The n-qubit Greenberger-Horne-Zeilinger state has a stabilizer subalgebra that achieves the maximum possible dimension for pure nonproduct states. The converse, however, is not true: we show examples of pure 4-qubit states that achieve the maximum nonproduct stabilizer dimension, but have stabilizer subalgebra structures different from that of the n-qubit GHZ state.Comment: 6 page

    Classification of nonproduct states with maximum stabilizer dimension

    Full text link
    Nonproduct n-qubit pure states with maximum dimensional stabilizer subgroups of the group of local unitary transformations are precisely the generalized n-qubit Greenberger-Horne-Zeilinger states and their local unitary equivalents, for n greater than or equal to 3 but not equal to 4. We characterize the Lie algebra of the stabilizer subgroup for these states. For n=4, there is an additional maximal stabilizer subalgebra, not local unitary equivalent to the former. We give a canonical form for states with this stabilizer as well.Comment: 6 pages, version 3 has a typographical correction in the displayed equation just after numbered equation (2), and other minor correction

    Symmetric mixed states of nn qubits: local unitary stabilizers and entanglement classes

    Full text link
    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states into six classes. These include the stabilizer types of the Werner states, the GHZ state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.Comment: 10 pages, 1 table, title change and minor clarifications for published versio

    Classification of n-qubit states with minimum orbit dimension

    Full text link
    The group of local unitary transformations acts on the space of n-qubit pure states, decomposing it into orbits. In a previous paper we proved that a product of singlet states (together with an unentangled qubit for a system with an odd number of qubits) achieves the smallest possible orbit dimension, equal to 3n/2 for n even and (3n + 1)/2 for n odd, where n is the number of qubits. In this paper we show that any state with minimum orbit dimension must be of this form, and furthermore, such states are classified up to local unitary equivalence by the sets of pairs of qubits entangled in singlets.Comment: 15 pages, latex, revision 2, conclusion added, some proofs shortene

    Multiparty quantum states stabilized by the diagonal subgroup of the local unitary group

    Full text link
    We classify, up to local unitary equivalence, the set of nn-qubit states that is stabilized by the diagonal subgroup of the local unitary group. We exhibit a basis for this set, parameterized by diagrams of nonintersecting chords connecting pairs of points on a circle, and give a criterion for when the stabilizer is precisely the diagonal subgroup and not larger. This investigation is part of a larger program to partially classify entanglement type (local unitary equivalence class) via analysis of stabilizer structure.Comment: 4 pages, 3 figures. Version 2 has numerous small changes and correction
    corecore