31 research outputs found

    A SYBR Green RT-PCR assay in single tube to detect human and bovine noroviruses and control for inhibition

    Get PDF
    BACKGROUND: Noroviruses are single-stranded RNA viruses belonging to the family Caliciviridae. They are a major cause of epidemic and sporadic gastroenteritis in humans and clinical signs and lesions of gastroenteritis were reported in bovines. Due to their genetic proximity, potential zoonotic transmission or animal reservoir can be hypothesized for noroviruses. RT-PCR has become the "gold standard" for the detection of noroviruses in faecal and environmental samples. With such samples, the control for inhibition of the reaction during amplification and detection is crucial to avoid false negative results, which might otherwise not be detected. The aim of the reported method is to detect, with a SYBR Green technology, a broad range of noroviruses with a control for inhibition. RESULTS: A SYBR Green real-time RT-PCR assay was developed making use of a foreign internal RNA control added in the same tube. This assay is able to detect human and bovine noroviruses belonging to genogroups I, II and III and to distinguish between norovirus and internal control amplicons using melting curve analysis. A 10-fold dilution of samples appears to be the method of choice to remove inhibition. This assay was validated with human and bovine stool samples previously tested for norovirus by conventional RT-PCR. CONCLUSION: This SYBR Green real-time RT-PCR assay allows the detection of the most important human and bovine noroviruses in the same assay, and avoids false negative results making use of an internal control. Melting curves allow the discrimination between the internal control and norovirus amplicons. It gives preliminary information about the species of origin. The sensitivity of the developed assay is higher than conventional RT-PCR and a 10-fold dilution of samples showed a better efficiency and reproducibility to remove RT-PCR inhibition than addition of bovine serum albumin

    Novel norovirus recombinants and of GII.4 sub-lineages associated with outbreaks between 2006 and 2010 in Belgium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noroviruses (NoVs) are an important cause of acute gastroenteritis in humans worldwide. To gain insight into the epidemiologic patterns of NoV outbreaks and to determine the genetic variation of NoVs strains circulating in Belgium, stool samples originating from patients infected with NoVs in foodborne outbreak investigations were analysed between December 2006 and December 2010.</p> <p>Results</p> <p>NoVs were found responsible of 11.8% of all suspected foodborne outbreaks reported in the last 4 years and the number of NoV outbreaks reported increased along the years representing more than 30% of all foodborne outbreaks in 2010. Genogroup II outbreaks largely predominated and represented more than 90% of all outbreaks. Phylogenetic analyses were performed with 63 NoV-positive samples for the partial polymerase (N = 45) and/or capsid gene (N = 35) sequences. For 12 samples, sequences covering the ORF1-ORF2 junction were obtained. A variety of genotypes was found among genogroups I and II; GII.4 was predominant followed in order of importance by GII.2, GII.7, GII.13, GI.4 and GI.7. In the study period, GII.4 NoVs variants 2006a, 2006b, 2007, 2008 and 2010 were identified. Moreover, phylogenetic analyses identified different recombinant NoV strains that were further characterised as intergenotype (GII.e/GII.4 2007, GII.e/GII.3 and GII.g/GII.1) and intersub-genotype (GII.4 2006b/GII.4 2007 and GII.4 2010/GII.4 2010b) recombinants.</p> <p>Conclusions</p> <p>NoVs circulating in the last 4 years in Belgium showed remarkable genetic diversity either by small-scale mutations or genetic recombination. In this period, GII.4 2006b was successfully displaced by the GII.4 2010 subtype, and previously reported epidemic GII.b recombinants seemed to have been superseded by GII.e recombinants in 2009 and GII.g recombinants in 2010. This study showed that the emergence of novel GII.4 variants together with novel GII recombinants could lead to an explosion in NoV outbreaks, likewise to what was observed in 2008 and 2010. Among recombinants detected in this study, two hitherto unreported strains GII.e/GII.3 and GII.g/GII.1 were characterised. Surveillance will remain important to monitor contemporaneously circulating strains in order to adapt preventive and curative strategies.</p

    Mapping the Demand Side of Computational Social Science for Policy

    Get PDF
    This report aims at collecting novel and pressing policy issues that can be addressed by Computational Social Science (CSS), an emerging discipline that is rooted in the increasing availability of digital trace data and computational resources and seeks to apply data science methods to social sciences. The questions were sourced from researchers at the European Commission who work at the interface between science and policy and who are well positioned to formulate research questions that are likely to anticipate future policy needs. The attempt is to identify possible directions for Computational Social Science starting from the demand side, making it an effort to consider not only how science can ultimately provide policy support — “Science for Policy – but also how policymakers can be involved in the process of defining and co-creating the CSS4P agenda from the outset — ‘Policy for Science’. The report is expected to raise awareness on the latest scientific advances in Computational Social Science and on its potential for policy, integrating the knowledge of policymakers and stimulating further questions in the context of future developments of this initiativeJRC.A.5 - Scientific Developmen

    Etude génotypique de norovirus humains et bovins contemporains et mise au point de méthodes rapides de détection et de quantification

    Full text link
    Les Norovirus (NoV), appartenant Ă  la famille des Caliciviridae, sont une cause majeure d’épidĂ©mies et de cas sporadiques de gastroentĂ©rites hautement contagieuses chez l’homme. Leur transmission emprunte la voie fĂ©cale-orale et ils sont Ă  l'origine d’une part importante des toxi-infections humaines d'origine alimentaire, en particulier dues Ă  la consommation de mollusques bivalves. Ils possĂšdent un gĂ©nome constituĂ© d’ARN monocatĂ©naire de polaritĂ© positive et sont classeĂ©s par analyse de proximitĂ© gĂ©nĂ©tique en cinq gĂ©nogroupes, contenant chacun plusieurs gĂ©notypes. Un problĂšme majeur rĂ©side dans l’incapacitĂ© Ă  multiplier facilement les NoV en culture de cellules. La RT-PCR est devenue la mĂ©thode de choix pour leur dĂ©tection dans les Ă©chantillons de matiĂšres fĂ©cales, les denrĂ©es alimentaires et les prĂ©lĂšvements effectuĂ©s dans l’environnement. Il est important de disposer de techniques Ă  la fois sensibles et permettant Ă©galement la dĂ©tection d’un large panel de NoV. La quantification de la charge virale est possible par l’utilisation des techniques de RT-PCR en temps rĂ©el et est primordiale pour non seulement dĂ©terminer le niveau de contamination d’un prĂ©lĂšvement, mais Ă©galement pour Ă©tudier et caractĂ©riser la pathogĂ©nie de l’infection Ă  NoV. Des NoV ont Ă©tĂ© dĂ©tectĂ©s dans diverses espĂšces animales, dont l’espĂšce bovine. Ces dĂ©couvertes ont soulevĂ© d'importantes questions sur une Ă©ventuelle transmission zoonotique et l'existence d'un rĂ©servoir animal pour les NoV. La caractĂ©risation molĂ©culaire des deux prototypes de NoV bovins, nommĂ©ment le virus Newbury2 et le virus Jena, a rĂ©vĂ©lĂ© qu'ils Ă©taient gĂ©nĂ©tiquement proches et associĂ©s aux NoV humains. Parmi les hypothĂšses Ă©voquĂ©es, les animaux pourraient ĂȘtre soit des porteurs passifs de NoV, soit infectĂ©s de maniĂšre active par ces virus, responsables dĂšs lors d'une zoonose. CaractĂ©riser les NoV circulant chez l’homme et les espĂšces animales est intĂ©ressant dans le but d’étudier leurs voies de transmission et l’éventuel passage inter-espĂšce de ces virus.Un mĂ©canisme important d'Ă©volution des NoV est la recombinaison, d’un grand intĂ©rĂȘt dans l’étude des NoV, gĂ©nĂ©rant des modifications du gĂ©nome viral aboutissant Ă  la crĂ©ation d’un gĂ©nome « chimĂšre » Ă  partir de deux gĂ©nomes parentaux diffĂ©rents. Elle crĂ©e ainsi de la variation gĂ©nĂ©tique et par lĂ  l’émergence de nouveaux virus. En effet, il est bien documentĂ© que la recombinaison se produit souvent parmi les NoV et contribue Ă  la diversitĂ© gĂ©nĂ©tique de ces virus ainsi qu’à l’apparition de nouvelles Ă©pidĂ©mies. La prĂ©valence des souches de NoV recombinants peut ĂȘtre sous-estimĂ©e par le fait que la caractĂ©risation des NoV est habituellement basĂ©e sur le sĂ©quençage partiel du gĂšne de l’ARN polymĂ©rase-ARN dĂ©pendante uniquement, alors qu’idĂ©alement il faudrait sĂ©quencer diffĂ©rentes parties du gĂ©nome, principalement l’ARN polymĂ©rase-ARN dĂ©pendante et la protĂ©ine de capside, pour identifier de tels virus. Il est important de dĂ©terminer prĂ©cisĂ©ment l'implication exacte de la recombinaison sur l’évolution des NoV afin de comprendre les mĂ©canismes d’évolution des souches et l'avantage sĂ©lectif confĂ©rĂ© pour certaines d’entre elles. Etudier ce mĂ©canisme permettra de mieux comprendre l’avantage sĂ©lectif observĂ© pour certains NoV et aidera Ă  Ă©lucider les voies de transmission des NoV. L’étude de ces deux points (transmission zoonotique et virus recombinants) est primordiale. En effet, le franchissement de la barriĂšre d’espĂšce affecterait Ă  la fois l'Ă©pidĂ©miologie et l'Ă©volution de ces virus, et compliqueraient Ă©galement la capacitĂ© au dĂ©veloppement d’un vaccin ou d’un traitement. Dans d'autres espĂšces animales, comme les chevaux ou les oiseaux, aucun NoV n’a Ă©tĂ© dĂ©tectĂ© Ă  ce jour mais ces derniĂšres annĂ©es, des NoV ont Ă©tĂ© dĂ©crits dans de nombreuses espĂšces animales (chien, lion, mouton). Cela laisse donc prĂ©sager d’une gamme d’espĂšce cible encore plus Ă©tendue. Ce travail s’inscrit dans le cadre de l’étude des voies de transmission des NoV avec comme objectif, aprĂšs la mise au point de mĂ©thodes rapides et sensibles de dĂ©tection et de quantification, d’apporter un Ă©claircissement aux questions importantes relatives Ă  l’évolution des NoV et Ă  leur catĂ©gorie d’hĂŽte.Dans un premier temps, la RT-PCR conventionnelle a Ă©tĂ© utilisĂ©e afin de dĂ©tecter les NoV dans les espĂšces humaine et bovine. Ensuite, une RT-PCR utilisant la technologie SYBR Green a Ă©tĂ© dĂ©veloppĂ©e et utilise un contrĂŽle interne constituĂ© d’ARN ajoutĂ© au mĂȘme tube. Ce test est capable de dĂ©tecter des NoV humains et bovins appartenant aux gĂ©nogroupes I, II et III et permet de faire la distinction entre les NoV et le contrĂŽle interne par l’analyse des courbes de dissociation. Une dilution 10 fois des Ă©chantillons s’est rĂ©vĂ©lĂ©e la mĂ©thode de choix pour lever les inhibitions. Afin de pouvoir confirmer directement le rĂ©sultat et de permettre la quantification des NoV, une RT-PCR en temps rĂ©el utilisant la technologie TaqMan a Ă©tĂ© dĂ©veloppĂ©e. Elle utilise un contrĂŽle interne d’ARN et un standard d’ARN. De façon trĂšs intĂ©ressante, cette mĂ©thode peut dĂ©tecter les NoV humains appartenant au gĂ©nogroupes I, II et bovins du gĂ©nogroupe III. Les inhibitions furent efficacement levĂ©es par une dilution 10 fois de l’échantillon ou l’ajout de sĂ©rum albumine bovine au mix de RT-PCR. Ces deux RT-PCR en temps rĂ©el ont montrĂ© une sensibilitĂ© supĂ©rieure comparĂ©e Ă  la RT-PCR conventionnelle. Avec pour objectif de comprendre les voies de transmission des NoV, la situation en Belgique a Ă©tĂ© investiguĂ©e et des NoV humains et bovins ont Ă©tĂ© dĂ©tectĂ©s et analysĂ©s par sĂ©quençage partiel. Des NoV appartenant Ă  diffĂ©rents gĂ©nogroupes ont Ă©tĂ© dĂ©tectĂ©s : GI et GII chez l’homme et GIII chez les bovins. Par analyse de la proximitĂ© gĂ©nĂ©tique, les NoV bovins se sont rĂ©vĂ©lĂ©s de gĂ©notype GIII.2 et les NoV humains de diffĂ©rents gĂ©notypes, mais majoritairement de gĂ©notype GII.4. Ces analyses ont permis Ă©galement l’identification d’une co-infection et de deux recombinants naturels, ces derniers Ă©tant proches de gĂ©notypes diffĂ©rents en fonction de la rĂ©gion du gĂ©nome analysĂ©e (polymĂ©rase ou capside). L'identification de zones privilĂ©giĂ©es pour la recombinaison dans la rĂ©gion situĂ©e Ă  la jonction de l'ORF (open reading frame) 1 et de l’ORF2 confirme l'importance de cette rĂ©gion dans ce phĂ©nomĂšne. Afin d’étudier l’évolution des NoV bovins, un NoV bovin dĂ©tectĂ© en Belgique fut sĂ©quencĂ© complĂštement (Bo/B309/2003/BE) et comparĂ© Ă  la souche originale Newbury2 (isolĂ©e dans les annĂ©es 80). D’une part, cette Ă©tudes a permis d’aboutir Ă  la mise au point et la validation d’outils permettant la dĂ©tection et l’étude les NoV humains et animaux, tant pour leur pathogĂ©nie, que leur Ă©volution ou leurs voies de transmission.D’autre part, basĂ©e sur le panel d’échantillons recueillis durant cette Ă©tude, l’analyse phylogĂ©nĂ©tique des NoV dĂ©tectĂ©s va dans le sens des Ă©tudes rĂ©alisĂ©es dans d’autres pays tendant Ă  montrer que les NoV bovins constituent un groupe de virus distincts, diffĂ©rents des NoV humains. Cela suggĂšre que les NoV bovins ne reprĂ©sentent pas un risque pour la santĂ© humaine. NĂ©anmoins, la possibilitĂ© d’une infection zoonotique ou d’un rĂ©servoir animal ne peut pas ĂȘtre exclue vu la proximitĂ© de sĂ©quence entre les NoV humains et animaux et aussi la relation Ă©troite et proche entre les populations humaines et les Ă©levages d’animaux. La dĂ©tection d’une co-infection et de deux recombinants naturels dĂ©montre les possibilitĂ©s d’évolution des NoV et l’importance d’une analyse complĂšte de leur gĂ©nome pour leur caractĂ©risation. Ce travail a Ă©tĂ© pionnier dans l’étude des NoV au laboratoire et a ouvert la voie Ă  d’autres sujets de recherche sur les NoV et Ă  de nouvelles thĂšses de doctorat, notamment sur l’étude de l’interaction NoV-hĂŽte (NoV dans l’espĂšce bovine) et l’étude de la recombinaison des NoV in vitro (NoV murins)

    La contamination de l'eau et des aliments par les virus pathogĂšnes pour l'homme

    Full text link
    peer reviewedaudience: researcher, professional, studen

    Infections virales humaines d'origine alimentaire

    Full text link
    Several viruses may be transmitted to humans via food including hepatitis A and E virus (VHA and VHE), Norwalk type calicivirus, rotavirus and astrovirus. Enterovirus and enteric adenovirus may also be transmitted. Sick people or healthy carriers excrete these viruses in their stools. Shellfish and water are the most frequently contaminated foodstuffs. Another route of infection is during handling of food. Detection of these viruses in food is complex for several reasons: the interaction of virus and food makes viral concentration and purification difficult, in vitro culture of these viruses is difficult if not impossible, and the quantity of virus present in the sample is low. Molecular technology (PCR) is the most suitable method of detection. Another method is to choose an indicator of viral faecal contamination.Plusieurs virus sont susceptibles d’ĂȘtre transmis Ă  l’homme par l’alimentation : les virus des hĂ©patites A et E (VHA et VHE) ; les calicivirus de type Norwalk ; les rotavirus et les astrovirus. Les entĂ©rovirus et les adĂ©novirus entĂ©riques peuvent Ă©galement ĂȘtre transmis. Ces virus sont excrĂ©tĂ©s dans les selles de malades ou de porteurs sains. Les aliments le plus souvent impliquĂ©s sont les coquillages et l’eau. Une autre voie d’infection est due Ă  la manipulation des aliments. La dĂ©tection de ces virus dans les aliments est rendue complexe pour plusieurs raisons : les interactions virus-aliments rendent la concentration et la purification virale dĂ©licates, la culture in vitro de ces virus est difficile voire impossible et la quantitĂ© de virus prĂ©sents dans l’échantillon est faible. Les techniques molĂ©culaires (PCR) sont les plus adaptĂ©es. Une autre mĂ©thode consiste Ă  choisir un indicateur de contamination virale fĂ©cale

    Norovirus animaux

    Full text link
    Among enteric caliciviruses, noroviruses belong to the genus Norovirus, one of the four accepted genera in the family Caliciviridae. These single-stranded, positive-sense RNA viruses are highly variable both genetically and antigenically. Several animal enteric caliciviruses that are morphologically indistinguishable and genetically closely related to human noroviruses have been identified. The first bovine enteric noroviruses were described in Great Britain and are known as Newbury Agent 2. At least three genetic clusters of porcine noroviruses join together within genogroup II noroviruses. Human noroviruses are the most important cause of acute gastroenteritis illness in people of all ages. In the USA, they are associated with approximately 30-50% of all food-borne outbreaks. Until now, noroviruses have not been associated with gastroenteritis outbreaks in immunocompetent animals. Neither bovine nor porcine noroviruses can replicate in cell culture, although human norovirus can grow in a complex 3D culture system. However, the recently discovered murine noroviruses can replicate in cell culture and are therefore used as model viruses to study human noroviruses. This review focusses on virus classification, virion structure, pathogenesis, epidemiology, immune response and diagnosis of animal noroviruses in comparison with human noroviruses. The classification of animal enteric caliciviruses within the Norovirus genus raises the question of whether transmission from an animal reservoir to humans could occur. Answering this question is important in determining the risk of cross-species infections affecting the epidemiology and evolution of these viruses and so complicating the control of human norovirus infections

    Norovirus and sapovirus in pigs in Belgium

    Full text link
    Noroviruses and sapoviruses belong to the norovirus and sapovirus genera respectively in the family Caliciviridae. These positive single stranded RNA viruses are known as common gastroenteritis agents in human and have been also identified in other species like swine (1). Porcine noroviruses and sapoviruses have been to date poorly detected in European countries. Porcine sapovirus have been only reported in 2 European countries, namely Hungary and Italy (2; 3) and porcine norovirus sequences were detected in The Netherlands (4). In this study, both porcine noroviruses and sapoviruses were detected in swine stools showing their circulation in Belgian premises. Seven samples gave positive amplicons. Using BLAST and phylogenetic analysis, two porcine norovirus strains were identified and are genetically related to genotype 19 strains. Five samples contained porcine sapoviruses and are genetically related to the Porcine Enteric Calicivirus Cowden and newly described porcine strains. Sapovirus sequences were mainly detected in stool of piglets (less than 8 weeks old). Only one sequence was detected in an older pig (16-20 weeks). Norovirus sequences were detected in stools of fattening pigs (16-20 weeks). Neither sapovirus nor norovirus detected sequences could be associated with clinical signs of gastroenteritis. In conclusion, the circulation of both porcine sapovirus and norovirus was shown in Belgium, extending their European distribution. Given uncertainties on the zoonotic risk, countries where swine and humans are relatively closed should develop surveillance programs where both human and animal calicivirus strains are screened in gastroenteritis outbreaks, wastewaters and veterinary diagnostic samples
    corecore