208 research outputs found

    Using the Incompressibility Method to obtain Local Lemma results for Ramsey-type Problems

    Full text link
    We reveal a connection between the incompressibility method and the Lovasz local lemma in the context of Ramsey theory. We obtain bounds by repeatedly encoding objects of interest and thereby compressing strings. The method is demonstrated on the example of van der Waerden numbers. It applies to lower bounds of Ramsey numbers, large transitive subtournaments and other Ramsey phenomena as well.Comment: 8 pages, 1 figur

    Towards an Isomorphism Dichotomy for Hereditary Graph Classes

    Get PDF
    In this paper we resolve the complexity of the isomorphism problem on all but finitely many of the graph classes characterized by two forbidden induced subgraphs. To this end we develop new techniques applicable for the structural and algorithmic analysis of graphs. First, we develop a methodology to show isomorphism completeness of the isomorphism problem on graph classes by providing a general framework unifying various reduction techniques. Second, we generalize the concept of the modular decomposition to colored graphs, allowing for non-standard decompositions. We show that, given a suitable decomposition functor, the graph isomorphism problem reduces to checking isomorphism of colored prime graphs. Third, we extend the techniques of bounded color valence and hypergraph isomorphism on hypergraphs of bounded color size as follows. We say a colored graph has generalized color valence at most k if, after removing all vertices in color classes of size at most k, for each color class C every vertex has at most k neighbors in C or at most k non-neighbors in C. We show that isomorphism of graphs of bounded generalized color valence can be solved in polynomial time.Comment: 37 pages, 4 figure

    Computing with Tangles

    Full text link
    Tangles of graphs have been introduced by Robertson and Seymour in the context of their graph minor theory. Tangles may be viewed as describing "k-connected components" of a graph (though in a twisted way). They play an important role in graph minor theory. An interesting aspect of tangles is that they cannot only be defined for graphs, but more generally for arbitrary connectivity functions (that is, integer-valued submodular and symmetric set functions). However, tangles are difficult to deal with algorithmically. To start with, it is unclear how to represent them, because they are families of separations and as such may be exponentially large. Our first contribution is a data structure for representing and accessing all tangles of a graph up to some fixed order. Using this data structure, we can prove an algorithmic version of a very general structure theorem due to Carmesin, Diestel, Harman and Hundertmark (for graphs) and Hundertmark (for arbitrary connectivity functions) that yields a canonical tree decomposition whose parts correspond to the maximal tangles. (This may be viewed as a generalisation of the decomposition of a graph into its 3-connected components.

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page

    Switching Reconstruction of Digraphs

    Get PDF
    Switching about a vertex in a digraph means to reverse the direction of every edge incident with that vertex. Bondy and Mercier introduced the problem of whether a digraph can be reconstructed up to isomorphism from the multiset of isomorphism types of digraphs obtained by switching about each vertex. Since the largest known non-reconstructible oriented graphs have 8 vertices, it is natural to ask whether there are any larger non-reconstructible graphs. In this paper we continue the investigation of this question. We find that there are exactly 44 non-reconstructible oriented graphs whose underlying undirected graphs have maximum degree at most 2. We also determine the full set of switching-stable oriented graphs, which are those graphs for which all switchings return a digraph isomorphic to the original

    The Weisfeiler-Leman Dimension of Planar Graphs is at most 3

    Full text link
    We prove that the Weisfeiler-Leman (WL) dimension of the class of all finite planar graphs is at most 3. In particular, every finite planar graph is definable in first-order logic with counting using at most 4 variables. The previously best known upper bounds for the dimension and number of variables were 14 and 15, respectively. First we show that, for dimension 3 and higher, the WL-algorithm correctly tests isomorphism of graphs in a minor-closed class whenever it determines the orbits of the automorphism group of any arc-colored 3-connected graph belonging to this class. Then we prove that, apart from several exceptional graphs (which have WL-dimension at most 2), the individualization of two correctly chosen vertices of a colored 3-connected planar graph followed by the 1-dimensional WL-algorithm produces the discrete vertex partition. This implies that the 3-dimensional WL-algorithm determines the orbits of a colored 3-connected planar graph. As a byproduct of the proof, we get a classification of the 3-connected planar graphs with fixing number 3.Comment: 34 pages, 3 figures, extended version of LICS 2017 pape
    • …
    corecore