95 research outputs found

    Lognormal Distributions and Geometric Averages of Positive Definite Matrices

    Full text link
    This article gives a formal definition of a lognormal family of probability distributions on the set of symmetric positive definite (PD) matrices, seen as a matrix-variate extension of the univariate lognormal family of distributions. Two forms of this distribution are obtained as the large sample limiting distribution via the central limit theorem of two types of geometric averages of i.i.d. PD matrices: the log-Euclidean average and the canonical geometric average. These averages correspond to two different geometries imposed on the set of PD matrices. The limiting distributions of these averages are used to provide large-sample confidence regions for the corresponding population means. The methods are illustrated on a voxelwise analysis of diffusion tensor imaging data, permitting a comparison between the various average types from the point of view of their sampling variability.Comment: 28 pages, 8 figure

    Multiple Testing of Local Maxima for Detection of Peaks in Random Fields

    Full text link
    A topological multiple testing scheme is presented for detecting peaks in images under stationary ergodic Gaussian noise, where tests are performed at local maxima of the smoothed observed signals. The procedure generalizes the one-dimensional scheme of Schwartzman et al. (2011) to Euclidean domains of arbitrary dimension. Two methods are developed according to two different ways of computing p-values: (i) using the exact distribution of the height of local maxima (Cheng and Schwartzman, 2014), available explicitly when the noise field is isotropic; (ii) using an approximation to the overshoot distribution of local maxima above a pre-threshold (Cheng and Schwartzman, 2014), applicable when the exact distribution is unknown, such as when the stationary noise field is non-isotropic. The algorithms, combined with the Benjamini-Hochberg procedure for thresholding p-values, provide asymptotic strong control of the False Discovery Rate (FDR) and power consistency, with specific rates, as the search space and signal strength get large. The optimal smoothing bandwidth and optimal pre-threshold are obtained to achieve maximum power. Simulations show that FDR levels are maintained in non-asymptotic conditions. The methods are illustrated in a nanoscopy image analysis problem of detecting fluorescent molecules against the image background.Comment: 30 pages, 5 figures. arXiv admin note: text overlap with arXiv:1203.306

    Standardization of multivariate Gaussian mixture models and background adjustment of PET images in brain oncology

    Full text link
    In brain oncology, it is routine to evaluate the progress or remission of the disease based on the differences between a pre-treatment and a post-treatment Positron Emission Tomography (PET) scan. Background adjustment is necessary to reduce confounding by tissue-dependent changes not related to the disease. When modeling the voxel intensities for the two scans as a bivariate Gaussian mixture, background adjustment translates into standardizing the mixture at each voxel, while tumor lesions present themselves as outliers to be detected. In this paper, we address the question of how to standardize the mixture to a standard multivariate normal distribution, so that the outliers (i.e., tumor lesions) can be detected using a statistical test. We show theoretically and numerically that the tail distribution of the standardized scores is favorably close to standard normal in a wide range of scenarios while being conservative at the tails, validating voxelwise hypothesis testing based on standardized scores. To address standardization in spatially heterogeneous image data, we propose a spatial and robust multivariate expectation-maximization (EM) algorithm, where prior class membership probabilities are provided by transformation of spatial probability template maps and the estimation of the class mean and covariances are robust to outliers. Simulations in both univariate and bivariate cases suggest that standardized scores with soft assignment have tail probabilities that are either very close to or more conservative than standard normal. The proposed methods are applied to a real data set from a PET phantom experiment, yet they are generic and can be used in other contexts
    • …
    corecore