8,508 research outputs found

    NASTRAN/FLEXSTAB procedure for static aeroelastic analysis

    Get PDF
    Presented is a procedure for using the FLEXSTAB External Structural Influence Coefficients (ESIC) computer program to produce the structural data necessary for the FLEXSTAB Stability Derivatives and Static Stability (SD&SS) program. The SD&SS program computes trim state, stability derivatives, and pressure and deflection data for a flexible airplane having a plane of symmetry. The procedure used a NASTRAN finite-element structural model as the source of structural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are boundary conditions and the NASTRAN substructuring technique

    Stress analyses of B-52 pylon hooks

    Get PDF
    The NASTRAN finite element computer program was used in the two dimensional stress analysis of B-52 carrier aircraft pylon hooks: (1) old rear hook (which failed), (2) new rear hook (improved geometry), (3) new DAST rear hook (derated geometry), and (4) front hook. NASTRAN model meshes were generated by the aid of PATRAN-G computer program. Brittle limit loads for all the four hooks were established. The critical stress level calculated from NASTRAN agrees reasonably well with the values predicted from the fracture mechanics for the failed old rear hook

    Preflight transient dynamic analyses of B-52 aircraft carrying Space Shuttle solid rocket booster drop-test vehicle

    Get PDF
    This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid rocket booster drop test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings

    Tunable multi-photon Rabi oscillations in an electronic spin system

    Full text link
    We report on multi-photon Rabi oscillations and controlled tuning of a multi-level system at room temperature (S=5/2 for Mn2+:MgO) in and out of a quasi-harmonic level configuration. The anisotropy is much smaller than the Zeeman splittings, such as the six level scheme shows only a small deviation from an equidistant diagram. This allows us to tune the spin dynamics by either compensating the cubic anisotropy with a precise static field orientation, or by microwave field intensity. Using the rotating frame approximation, the experiments are very well explained by both an analytical model and a generalized numerical model. The calculated multi-photon Rabi frequencies are in excellent agreement with the experimental data

    Memory difference control of unknown unstable fixed points: Drifting parameter conditions and delayed measurement

    Full text link
    Difference control schemes for controlling unstable fixed points become important if the exact position of the fixed point is unavailable or moving due to drifting parameters. We propose a memory difference control method for stabilization of a priori unknown unstable fixed points by introducing a memory term. If the amplitude of the control applied in the previous time step is added to the present control signal, fixed points with arbitrary Lyapunov numbers can be controlled. This method is also extended to compensate arbitrary time steps of measurement delay. We show that our method stabilizes orbits of the Chua circuit where ordinary difference control fails.Comment: 5 pages, 8 figures. See also chao-dyn/9810029 (Phys. Rev. E 70, 056225) and nlin.CD/0204031 (Phys. Rev. E 70, 046205

    Multi-photon Rabi oscillations in high spin paramagnetic impurity

    Full text link
    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn2+^{2+} (S=5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S=1/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.Comment: International Conference: Resonance in Condensed Matter Altshuler 10

    Bacterial community profiles and Vibrio parahaemolyticus abundance in individual oysters and their association with estuarine ecology

    Get PDF
    Oysters naturally harbor the human gastric pathogen Vibrio parahaemolyticus, but the nature of this association is unknown. Because microbial interactions could influence the accumulation of V. parahaemolyticus in oysters, we investigated the composition of the microbiome in water and oysters at two ecologically unique sites in the Great Bay Estuary, New Hampshire using 16s rRNA profiling. We then evaluated correlations between bacteria inhabiting the oyster with V. parahaemolyticus abundance quantified using a most probable number (MPN) analysis. Even though oysters filter-feed, their microbiomes were not a direct snapshot of the bacterial community in overlaying water, suggesting they selectively accumulate some bacterial phyla. The microbiome of individual oysters harvested more centrally in the bay were relatively more similar to each other and had fewer unique phylotypes, but overall more taxonomic and metabolic diversity, than the microbiomes from tributary-harvested oysters that were individually more variable with lower taxonomic and metabolic diversity. Oysters harvested from the same location varied in V. parahaemolyticus abundance, with the highest abundance oysters collected from one location. This study, which to our knowledge is the first of its kind to evaluate associations of V. parahaemolyticus abundance with members of individual oyster microbiomes, implies that sufficient sampling and depth of sequencing may reveal microbiome members that could impact V. parahaemolyticus abundance

    Towards Interpretable Deep Learning Models for Knowledge Tracing

    Full text link
    As an important technique for modeling the knowledge states of learners, the traditional knowledge tracing (KT) models have been widely used to support intelligent tutoring systems and MOOC platforms. Driven by the fast advancements of deep learning techniques, deep neural network has been recently adopted to design new KT models for achieving better prediction performance. However, the lack of interpretability of these models has painfully impeded their practical applications, as their outputs and working mechanisms suffer from the intransparent decision process and complex inner structures. We thus propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models. Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model by backpropagating the relevance from the model's output layer to its input layer. The experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions, and partially validate the computed relevance scores from both question level and concept level. We believe it can be a solid step towards fully interpreting the DLKT models and promote their practical applications in the education domain
    • …