624 research outputs found

    Probing the Equation of State of Nuclear Matter via Neutron Star Asteroseismology

    Full text link
    We general relativistically calculate the frequency of fundamental torsional oscillations of neutron star crusts, where we focus on the crystalline properties obtained from macroscopic nuclear models in a way depending on the equation of state of nuclear matter. We find that the calculated frequency is sensitive to the density dependence of the symmetry energy, but almost independent of the incompressibility of symmetric nuclear matter. By identifying the lowest-frequency quasi-periodic oscillation in giant flares observed from soft gamma-ray repeaters as the fundamental torsional mode and allowing for the dependence of the calculated frequency on stellar models, we provide a lower limit of the density derivative of the symmetry energy as L≃50L\simeq 50 MeV.Comment: 4 pages, 4 figure

    An Approach to Learning Strategy Training for Groups of Secondary Students

    Get PDF
    This research was published by the KU Center for Research on Learning, formerly known as the University of Kansas Institute for Research in Learning Disabilities.The purpose of this article is to outline specific instructional procedures that can be used effectively to teach LD adolescents in small-group settings. Specifically, the article covers the following: a brief review of research on 1 earning strategies conducted by the University of Kansas Institute for Research in Learning Disabilities, (KU-IRLD); a set of instructional procedures for teaching specific learning strategies to groups of LD adolescents; and a set of general principles for teaching learning strategies to groups of students

    Crustal Oscillations of Slowly Rotating Relativistic Stars

    Full text link
    We study low-amplitude crustal oscillations of slowly rotating relativistic stars consisting of a central fluid core and an outer thin solid crust. We estimate the effect of rotation on the torsional toroidal modes and on the interfacial and shear spheroidal modes. The results compared against the Newtonian ones for wide range of neutron star models and equations of state.Comment: 15 page

    Cosmological Perturbations of Quantum-Mechanical Origin and Anisotropy of the Microwave Background

    Get PDF
    Cosmological perturbations generated quantum-mechanically (as a particular case, during inflation) possess statistical properties of squeezed quantum states. The power spectra of the perturbations are modulated and the angular distribution of the produced temperature fluctuations of the CMBR is quite specific. An exact formula is derived for the angular correlation function of the temperature fluctuations caused by squeezed gravitational waves. The predicted angular pattern can, in principle, be revealed by the COBE-type observations.Comment: 9 pages, WUGRAV-92-17 Accepted for Publication in Phys. Rev. Letters (1993

    Quantum teleportation with squeezed vacuum states

    Get PDF
    We show how the partial entanglement inherent in a two mode squeezed vacuum state admits two different teleportation protocols. These two protocols refer to the different kinds of joint measurements that may be made by the sender. One protocol is the recently implemented quadrature phase approach of Braunstein and Kimble[Phys. Rev. Lett.{\bf 80}, 869 (1998)]. The other is based on recognising that a two mode squeezed vacuum state is also entangled with respect to photon number difference and phase sum. We show that this protocol can also realise teleportation, however limitations can arise due to the fact that the photon number spectrum is bounded from below by zero. Our examples show that a given entanglement resource may admit more than a single teleportation protocol and the question then arises as to what is the optimum protocol in the general case

    Discovery of Fast X-ray Oscillations During the 1998 Giant Flare from SGR 1900+14

    Full text link
    We report the discovery of complex high frequency variability during the August 27, 1998 giant flare from SGR 1900+14 using the Rossi X-ray Timing Explorer (RXTE). We detect an 84 Hz oscillation (QPO) during a 1 s interval beginning approximately 1 min after the initial hard spike. The modulation amplitude is energy dependent, reaching a maximum of 26% (rms) for photons above 30 keV, and is not detected below 11 keV, with a 90% confidence upper limit of 14% (rms). Remarkably, additional QPOs are detected in the average power spectrum of data segments centered on the rotational phase at which the 84 Hz signal was detected. Two signals, at 53.5 and 155.1 Hz, are strongly detected, while a third feature at 28 Hz is found with lower significance. These QPOs are not detected at other rotational phases. The phenomenology seen in the SGR 1900+14 flare is similar to that of QPOs recently reported by Israel et al. from the December 27, 2004 flare from SGR 1806-20, suggesting they may have a common origin, perhaps torsional vibrations of the neutron star crust. Indeed, an association of the four frequencies (in increasing order) found in SGR 1900+14 with l = 2, 4, 7, and 13 toroidal modes appears plausible. We discuss our findings in the context of this model and show that if the stars have similar masses then the magnetic field in SGR 1806-20 must be about twice as large as in SGR 1900+14, broadly consistent with magnetic field estimates from pulse timing.Comment: 13 Pages, 5 figures, AASTeX, accepted for publication in the Astrophysical Journal Letter

    Oscillations of rapidly rotating relativistic stars

    Full text link
    Non-axisymmetric oscillations of rapidly rotating relativistic stars are studied using the Cowling approximation. The oscillation spectra have been estimated by Fourier transforming the evolution equations describing the perturbations. This is the first study of its kind and provides information on the effect of fast rotation on the oscillation spectra while it offers the possibility in studying the complete problem by including spacetime perturbations. Our study includes both axisymmetric and non-axisymmetric perturbations and provides limits for the onset of the secular bar mode rotational instability. We also present approximate formulae for the dependence of the oscillation spectrum from rotation. The results suggest that it is possible to extract the relativistic star's parameters from the observed gravitational wave spectrum.Comment: this article will be published in Physical Review

    Maximum elastic deformations of relativistic stars

    Full text link
    We present a method for calculating the maximum elastic quadrupolar deformations of relativistic stars, generalizing the previous Newtonian, Cowling approximation integral given by [G. Ushomirsky et al., Mon. Not. R. Astron. Soc. 319, 902 (2000)]. (We also present a method for Newtonian gravity with no Cowling approximation.) We apply these methods to the m = 2 quadrupoles most relevant for gravitational radiation in three cases: crustal deformations, deformations of crystalline cores of hadron-quark hybrid stars, and deformations of entirely crystalline color superconducting quark stars. In all cases, we find suppressions of the quadrupole due to relativity compared to the Newtonian Cowling approximation, particularly for compact stars. For the crust these suppressions are up to a factor ~6, for hybrid stars they are up to ~4, and for solid quark stars they are at most ~2, with slight enhancements instead for low mass stars. We also explore ranges of masses and equations of state more than in previous work, and find that for some parameters the maximum quadrupoles can still be very large. Even with the relativistic suppressions, we find that 1.4 solar mass stars can sustain crustal quadrupoles of a few times 10^39 g cm^2 for the SLy equation of state or close to 10^40 g cm^2 for equations of state that produce less compact stars. Solid quark stars of 1.4 solar masses can sustain quadrupoles of around 10^44 g cm^2. Hybrid stars typically do not have solid cores at 1.4 solar masses, but the most massive ones (~2 solar masses) can sustain quadrupoles of a few times 10^41 g cm^2 for typical microphysical parameters and a few times 10^42 g cm^2 for extreme ones. All of these quadrupoles assume a breaking strain of 0.1 and can be divided by 10^45 g cm^2 to yield the fiducial "ellipticities" quoted elsewhere.Comment: 21 pages, 11 figures, version accepted by PRD, including the corrected maximum hybrid star quadrupoles (from the erratum to the shear modulus calculation) and the corrected binding energy computatio

    A Model for Conducting Research with Learning Disabled Adolescents and Young Adults

    Get PDF
    This research was published by the KU Center for Research on Learning, formerly known as the University of Kansas Institute for Research in Learning Disabilities.Issues from the field of learning disabilities and the field of education in general which impact the learning disabled individual are discussed as they relate to research with learning disabled adolescents and young adults . Based on this knowledge of the context in which the LD adolescent is required to function, a research model that allows a commitment to programmatic research leading to the validation of interventions as well as the generation and investigation of new research questions is presented. Critical questions within the three research areas of the Institute epidemiology, intervention, and generalization-- are discussed as they relate to this research model
    • …
    corecore