104 research outputs found

    Weak disorder expansion for localization lengths of quasi-1D systems

    Get PDF
    A perturbative formula for the lowest Lyapunov exponent of an Anderson model on a strip is presented. It is expressed in terms of an energy-dependent doubly stochastic matrix, the size of which is proportional to the strip width. This matrix and the resulting perturbative expression for the Lyapunov exponent are evaluated numerically. Dependence on energy, strip width and disorder strength are thoroughly compared with the results obtained by the standard transfer matrix method. Good agreement is found for all energies in the band of the free operator and this even for quite large values of the disorder strength

    Delocalization in random polymer models

    Full text link
    A random polymer model is a one-dimensional Jacobi matrix randomly composed of two finite building blocks. If the two associated transfer matrices commute, the corresponding energy is called critical. Such critical energies appear in physical models, an example being the widely studied random dimer model. It is proven that the Lyapunov exponent vanishes quadratically at a generic critical energy and that the density of states is positive there. Large deviation estimates around these asymptotics allow to prove optimal lower bounds on quantum transport, showing that it is almost surely overdiffusive even though the models are known to have pure-point spectrum with exponentially localized eigenstates for almost every configuration of the polymers. Furthermore, the level spacing is shown to be regular at the critical energy

    Mott law as lower bound for a random walk in a random environment

    Full text link
    We consider a random walk on the support of a stationary simple point process on RdR^d, d≥2d\geq 2 which satisfies a mixing condition w.r.t.the translations or has a strictly positive density uniformly on large enough cubes. Furthermore the point process is furnished with independent random bounded energy marks. The transition rates of the random walk decay exponentially in the jump distances and depend on the energies through a factor of the Boltzmann-type. This is an effective model for the phonon-induced hopping of electrons in disordered solids within the regime of strong Anderson localization. We show that the rescaled random walk converges to a Brownian motion whose diffusion coefficient is bounded below by Mott's law for the variable range hopping conductivity at zero frequency. The proof of the lower bound involves estimates for the supercritical regime of an associated site percolation problem

    Spectral averaging techniques for Jacobi matrices with matrix entries

    Full text link
    A Jacobi matrix with matrix entries is a self-adjoint block tridiagonal matrix with invertible blocks on the off-diagonals. Averaging over boundary conditions leads to explicit formulas for the averaged spectral measure which can potentially be useful for spectral analysis. Furthermore another variant of spectral averaging over coupling constants for these operators is presented

    Boundary maps for C∗C^*-crossed products with R with an application to the quantum Hall effect

    Full text link
    The boundary map in K-theory arising from the Wiener-Hopf extension of a crossed product algebra with R is the Connes-Thom isomorphism. In this article the Wiener Hopf extension is combined with the Heisenberg group algebra to provide an elementary construction of a corresponding map on higher traces (and cyclic cohomology). It then follows directly from a non-commutative Stokes theorem that this map is dual w.r.t.Connes' pairing of cyclic cohomology with K-theory. As an application, we prove equality of quantized bulk and edge conductivities for the integer quantum Hall effect described by continuous magnetic Schroedinger operators.Comment: to appear in Commun. Math. Phy

    Linear response theory for magnetic Schroedinger operators in disordered media

    Get PDF
    We justify the linear response theory for an ergodic Schroedinger operator with magnetic field within the non-interacting particle approximation, and derive a Kubo formula for the electric conductivity tensor. To achieve that, we construct suitable normed spaces of measurable covariant operators where the Liouville equation can be solved uniquely. If the Fermi level falls into a region of localization, we recover the well-known Kubo-Streda formula for the quantum Hall conductivity at zero temperature.Comment: Latex, 68 pages, misprints corrected, formatting change

    Low density expansion for Lyapunov exponents

    Full text link
    In some quasi-one-dimensional weakly disordered media, impurities are large and rare rather than small and dense. For an Anderson model with a low density of strong impurities, a perturbation theory in the impurity density is developed for the Lyapunov exponent and the density of states. The Lyapunov exponent grows linearly with the density. Anomalies of the Kappus-Wegner type appear for all rational quasi-momenta even in lowest order perturbation theory
    • …
    corecore